M.Sc.(Physics) (NEP Pattern) Semester-I

NEP-236-1 / 01MSCPH4.1 - (DSE 4.1) Paper-IV : Complex Analysis and Numerical Methods

P. Pages: 3 GUG/W/23/15137

Time : Three Hours * 8 0 6 4 * Max. Marks : 80

Either

1. a) Show that the following equations are analytic and find their derivatives?

8

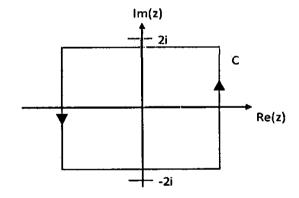
- i) e^z
- ii) sinhz
- b) Perform the indicated operation and write the answers in standard form:

8

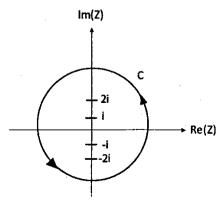
8

i) (4-5i)(12+11i)

- ii) 8i(10+2i)
- iii) (1+4i)-(-16+9i) and


and

iv) $\frac{(7-i)}{(2+10i)}$


OR

e) If $x = \cos \theta + i \sin \theta$, $y = \cos \phi + i \sin \phi$, then prove that: $\frac{x - y}{x + y} = i \tan \left(\frac{\theta - \phi}{2}\right)$.

f) i) Compute $\int_{C} \frac{\cos(z)dz}{z(z^2+0)}$ over the contour shown below:

ii) Compute $\int_C \frac{z dz}{(z^2 + 4)}$ over the curve C shown below:

Either

- **2.** a) Using Residue theorem evaluate:
 - i) $\int_{C} \frac{1}{\sin h z}$ where 'C' is circle |z| = 4 and
 - ii) $\frac{1}{2\pi i} \oint_C \frac{e^{zt} dz}{z^2(z^2 + 2z + 2)}$ where, 'C' is the circle |z| = 3.
 - b) Evaluate: $\int \frac{z-1}{C(z+1)^2(z-2)} dz$ where, C is |z-i|=2.

OR

- e) Explain pole of order 'm'? Further find the poles of following functions:
 - i) $f(z) = \sin\left(\frac{1}{z-a}\right)$ and
- ii) $f(z) = \frac{\sin(z-a)}{(z-a)^4}$

8

8

8

8

8

8

8

8

8

- f) Find the pole as well as Residue of the following functions at each pole of:
 - i) $\frac{z^2}{(z-1)(z-2)^2}$ and
- $ii) \qquad \frac{1 e^{2z}}{z^4}$

Either

- 3. a) Find the root of the equation $x^3 x 4 = 0$ using false position method corrected to three decimal places.
 - b) Find the root of the equation $x^3 4x 9 = 0$ using Bisection Method corrected to four significant places.

OR

e) From the following table of values find y(2.7) and y(3.9) using Newtons Forward difference Interpolation formula.

X	2.5	3.0	3.5	4.0	4.5
y(x)	9.75	12.45	15.70	19.52	23.75

f) Define finite difference. Explain the different types of finite difference.

Either

4. a) Evaluate f(9) using Newtons Divided difference Formula.

Х	5	7	11	13	17
f(x)	150	392	1452	2366	5202

Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by using Simpsons $\frac{1}{3}$ rd and $\frac{3}{8}$ th rule divided into 6 interval points.

OR

Find the solution of the differential equation: $\frac{dy}{dx} = \sin(x+y) - e^x$, with y(0) = 4 and h = 0.1 using Eulers method.

8

4

4

- Find y(1) using Runge-Kutta method of order two by solving the equation: $\frac{dy}{dx} = -2xy^2$, y0) with step size 0.1.
- **5.** Answer all the followings.
 - a) If n is real, then show that $r^{n}(\cos n\theta + i\sin n\theta)$ is analytic.
 - b) Use Cauchy Integral formula to evaluate: $\int_C \frac{z \, dz}{(z^2 3z + 2)}$ where Z is the circle and $|z 2| = \frac{1}{2}$.
 - c) Find the real root of the equation $x^3 + x^2 1 = 0$ on the interval (0, 1) corrected up to three decimal places using Iteration Method.
 - d) Given the table of values, find x(0.390) using Lagrange's Interpolation formula corrected up to five significant digits.

X	20	25	30	35	
f(x)	0.342	0.423	0.500	0.650	
