Notes: 1. All questions are compulsory.
2. Each questions carry equal marks.

UNIT - I

1. a) Let ϕ be any solution of $L(y)=y^{\prime \prime}+a_{1} y^{\prime}+a_{2} y=0$ on an interval I containing a point x_{0}. Then prove that for all x in I
$\left\|\phi\left(\mathrm{x}_{0}\right)\right\| \mathrm{e}^{-\mathrm{k}\left|\mathrm{x}-\mathrm{x}_{0}\right|} \leqq\|\mathrm{p}(\mathrm{x})\| \leqq\left\|\phi\left(\mathrm{x}_{0}\right)\right\| \mathrm{e}^{\mathrm{k}\left|\mathrm{x}-\mathrm{x}_{0}\right|}$
Where
$\|\phi(\mathrm{x})\|=\left[|\phi(\mathrm{x})|^{2}+\left|\phi^{\prime}(\mathrm{x})\right|^{2}\right]^{1 / 2}, \mathrm{k}=1+\left|\mathrm{a}_{1}\right|+\left|\mathrm{a}_{2}\right|$.
b) Prove that ϕ_{1}, ϕ_{2} of $\mathrm{L}(\mathrm{y})=0$ are linearly independent on an interval I if, and only if, $\mathrm{W}\left(\phi_{1}, \phi_{2}\right)(\mathrm{x}) \neq 0$ for all x in I.

OR

c) If ϕ_{1}, ϕ_{2} are two solutions of $L(y)^{\prime}=y^{\prime \prime}+a_{1} y^{\prime}+a_{2} y=0$ on an interval I containing a point x_{0}, then prove that $\mathrm{w}\left(\phi_{1}, \phi_{2}\right)(\mathrm{x})=\mathrm{e}^{-\mathrm{a} 1\left(\mathrm{x}-\mathrm{x}_{0}\right) \mathrm{w}\left(\phi_{1}, \phi_{2}\right)\left(\mathrm{x}_{0}\right)}$
d) Let ϕ be any solution of $L(y)=y^{(n)}+a_{1} y^{(n-1)}+\ldots+a_{n} y=0$ on an interval I containing a point x_{0}. Then Prove that for all x in $I,\left\|\phi\left(x_{0}\right)\right\| e^{-k\left|x-x_{0}\right|} \leqq\|\phi(x)\| \leqq\left\|\phi\left(x_{0}\right)\right\| e^{k\left|x-x_{0}\right|}$, Where $\mathrm{k}=1+\left|\mathrm{a}_{1}\right|+\ldots+\left|\mathrm{a}_{\mathrm{n}}\right|$

UNIT - II

2. a) Let $\phi_{1}, \ldots, \phi_{n}$ be the n solutions $L(y)=0$ satisfying $\phi_{i}{ }^{(i-1)}\left(x_{0}\right)=1, \phi j^{(j-1)}\left(x_{0}\right)=0, j \neq i$. If ϕ is any solution of $L(y)=0$ on I, then prove that there are n constant $c_{1}, c_{2}, \ldots, c_{n}$ such that $\phi=\mathrm{c}_{1} \phi_{1}+\ldots+\mathrm{c}_{\mathrm{n}} \phi_{\mathrm{n}}$.
b) Prove that if $\phi_{1}, \ldots \phi_{\mathrm{n}}$ are n solutions of $\mathrm{L}(\mathrm{y})=0$ on an interval I , they are linearly independent there if and only if, $\mathrm{w}\left(\phi_{1}, \ldots, \phi_{\mathrm{n}}\right)(\mathrm{x}) \neq 0$ for all x in I.

OR

d) Solve the Besels equation of order α, where α is a constant and $\operatorname{Re} \alpha \geq 0$.
3. a) Prove that a function ϕ is a solution of the initial value problem $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$ on an interval I if and only if it is a solution of the integral equation $y=y_{0}+\int_{x_{0}}^{x} f(t, y) d t$ on I.
b) Let M, N be two real-valued functions which have continuous first partial derivatives on some rectangle $\mathrm{R}:\left|\mathrm{x}-\mathrm{x}_{0}\right| \leqq \mathrm{a},\left|\mathrm{y}-\mathrm{y}_{0}\right| \leqq \mathrm{b}$. The prove that the equation $M(x, y)+N(x, y) y^{\prime}=0$ is exact in R if, and only if, $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$.

OR

c) Consider the initial value problem $y^{\prime}=3 y+1, y(0)=2$. Show that all the successive approximations $\phi_{0}, \phi_{1}, \ldots$ exists for all real x .
d) Suppose F is a real-valued continuous function on the plane $|\mathrm{x}|<\infty,|\mathrm{y}|<\infty$, which satisfies a Lipschitz condition on each strip $\mathrm{S}_{\mathrm{a}}:|\mathrm{x}| \leqq \mathrm{a},|\mathrm{y}|<\infty$, where a is any positive number. Then prove that every initial value problem $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$ has a solution which exists for all x .

UNIT - IV

4. a) Write a note on the following some special equations.
i) The equation $y^{\prime \prime}=f\left(x, y^{\prime}\right)$
ii) The equation $y^{\prime \prime}=f\left(y, y^{\prime \prime}\right)$
b) Suppose f is a vector - valued function defined for (x, y) on a set S of the form $\left|x-x_{0}\right| \leqq a,\left|y-y_{0}\right| \leqq b,(a, b>0) \quad$ or of the form $\left|x-x_{0}\right| \leqq a,|y|<\infty,(a>0)$. If $\partial f / \partial y_{k}(k=1, \ldots, n)$ exists, is continuous on S, and there is a constant $k>0$ such that $\left|\frac{\partial \mathrm{f}}{\partial \mathrm{y}_{\mathrm{k}}}(\mathrm{x}, \mathrm{y})\right| \leqq \mathrm{k},(\mathrm{k}=1, \ldots, \mathrm{n})$ for all (x, y) in S , then prove that f satisfies a Lipschitz condition on s with Lipschitz constant k .

OR

c) Let f be a complex - valued continuous function defined on
$R:\left|x-x_{0}\right| \leqq a,\left|y-y_{0}\right| \leq b,(a, b \geq 0)$ such that $|f(x, y)| \leqq N$ for all (x, y) in R. Suppose there exists a constant $L>0$ such that $|f(x, y)-f(x, z)| \leqq L|y-z|$ for all (x, y) and (x, z) in R. Then prove that there exists one, and only one, solution ϕ of $y^{(n)}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)$ on the interval $I=\left|x-x_{0}\right| \leqq \min |a, b / m|,\left(M=N+b+\left|y_{0}\right|\right)$ Which satisfies $\phi\left(\mathrm{x}_{0}\right)=\mathrm{a}_{1}, \phi^{\prime}\left(\mathrm{x}_{0}\right)=\mathrm{a}_{2}, \ldots, \phi^{(\mathrm{n}-1)}\left(\mathrm{x}_{0}\right)=$ an $\left(\mathrm{y}_{0}=\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right)\right)$
d) Let F be a continuous vector-valued function defined on R: $\left|x-x_{0}\right| \leqq a,\left|y-y_{0}\right| \leqq b$
($\mathrm{a}, \mathrm{b}>0$) and suppose F satisfies a Lipschitz condition on R . If M is a constant such that $|f(x, y)| \leqq M$ for all (x, y) in R. Then prove that the successive approximations $\left\{\phi_{\mathrm{k}}\right\},(\mathrm{k}=0,1,2 \ldots)$ given by $\phi_{0}(\mathrm{x})=\mathrm{y}_{0}$ converges on the interval $\mathrm{I}:\left|\mathrm{x}-\mathrm{x}_{0}\right| \leq \alpha=$ minimum $\{a, b / m\}$, to a solution ϕ of the initial value problem $y^{\prime}=f(x, y)+y\left(x_{0}\right)=y_{0}$ on I.
5. Solve the following,
a) Verify that the solutions $\phi(x)=e^{-\sin x}$ for the differential equations $y^{\prime}+(\cos x) y=0$.
b) Consider the equation $y^{\prime \prime}+\frac{1}{x} y^{\prime}-\frac{1}{x^{2}} y=0$. Find two linearly independent solutions for $x>0$, and prove that they are linearly independent:
c) Find all real-valued solution of the

$$
y^{\prime}=\frac{x+x^{2}}{y-y^{2}}
$$

d) Solve the differential equation $y^{2} y^{\prime \prime}=y^{\prime}$.

