P. Pages: 3

Time: Three Hours

GUG/W/23/15117

Max. Marks: 80

Notes : 1. All questions are compulsory. 2. Each questions carry equal marks.

UNIT – I

8 1. a) Let ϕ be any solution of $L(y) = y'' + a_1 y' + a_2 y = 0$ on an interval I containing a point x_0 . Then prove that for all x in I $\|\phi(\mathbf{x}_0)\|e^{-k|\mathbf{x}-\mathbf{x}_0|} \le \|p(\mathbf{x})\| \le \|\phi(\mathbf{x}_0)\|e^{k|\mathbf{x}-\mathbf{x}_0|}$

$$\|\phi(\mathbf{x})\| = \left[|\phi(\mathbf{x})|^2 + |\phi'(\mathbf{x})|^2 \right]^{\frac{1}{2}}, k = 1 + |a_1| + |a_2|.$$

Prove that ϕ_1 , ϕ_2 of L(y) = 0 are linearly independent on an interval I if, and only if, 8 b) $W(\phi_1, \phi_2)(x) \neq 0$ for all x in I.

OR

- If ϕ_1, ϕ_2 are two solutions of $L(y)' = y'' + a_1y' + a_2y = 0$ on an interval I containing a point 8 c) x_0 , then prove that $w(\phi_1,\phi_2)(x) = e^{-a_1(x-x_0)w(\phi_1,\phi_2)(x_0)}$
- Let ϕ be any solution of $L(y) = y^{(n)} + a_1 y^{(n-1)} + ... + a_n y = 0$ on an interval I containing d) 8 a point x_0 . Then Prove that for all x in I, $\|\phi(x_0)\|e^{-k|x-x_0|} \leq \|\phi(x)\| \leq \|\phi(x_0)\|e^{k|x-x_0|}$, Where $k = 1 + |a_1| + ... + |a_n|$

UNIT – II

- 2. 8 Let $\phi_1, ..., \phi_n$ be the n solutions L(y) = 0 satisfying $\phi_i^{(i-1)}(x_0) = 1, \phi_j^{(j-1)}(x_0) = 0, \ j \neq i$. If a) ϕ is any solution of L(y) = 0 on I, then prove that there are n constant c₁, c₂,..., c_n such that $\phi = c_1 \phi_1 + \ldots + c_n \phi_n$.
 - Prove that if $\phi_1, ..., \phi_n$ are n solutions of L(y) = 0 on an interval I, they are linearly 8 b) independent there if and only if, $w(\phi_1,...,\phi_n)(x) \neq 0$ for all x in I.

OR

- 8 c) Show that the coefficient of x^n in $p_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$ is $\frac{(2n)!}{2^n (n!)^2}$
- Solve the Besels equation of order α , where α is a constant and Re $\alpha \ge 0$. 8 d)

UNIT – III

- 3. a) Prove that a function ϕ is a solution of the initial value problem $y' = f(x, y), y(x_0) = y_0$ on an interval I if and only if it is a solution of the integral equation $y = y_0 + \int_{x_0}^{x} f(t, y) dt$ on I.
 - b) Let M, N be two real-valued functions which have continuous first partial derivatives on **8** some rectangle $R: |x-x_0| \le a, |y-y_0| \le b$. The prove that the equation

M(x,y)+N(x,y)y'=0 is exact in R if, and only if, $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$.

OR

- c) Consider the initial value problem y'=3y+1, y(0)=2. Show that all the successive approximations ϕ_0, ϕ_1, \dots exists for all real x.
- d) Suppose F is a real-valued continuous function on the plane $|x| < \infty$, $|y| < \infty$, which satisfies 8 a Lipschitz condition on each strip $S_a : |x| \le a$, $|y| < \infty$, where a is any positive number. Then prove that every initial value problem $y' = f(x, y), y(x_0) = y_0$ has a solution which exists for all x.

UNIT - IV

- **4.** a) Write a note on the following some special equations.
 - i) The equation y'' = f(x, y')
 - ii) The equation y'' = f(y, y'')
 - b) Suppose f is a vector valued function defined for (x,y) on a set S of the form $|x-x_0| \le a, |y-y_0| \le b, (a,b>0)$ or of the form $|x-x_0| \le a, |y| < \infty, (a>0)$. If $\frac{\partial f}{\partial y_k}(k=1,...,n)$ exists, is continuous on S, and there is a constant k>0 such that $\left|\frac{\partial f}{\partial y_k}(x,y)\right| \le k, (k=1,...,n)$ for all (x,y) in S, then prove that f satisfies a Lipschitz condition on s with Lipschitz constant k.

OR

c) Let f be a complex – valued continuous function defined on $R:|x-x_0| \le a, |y-y_0| \le b, (a, b \ge 0) \text{ such that } |f(x, y)| \le N \text{ for all } (x, y) \text{ in } R. \text{ Suppose}$ there exists a constant L > 0 such that $|f(x, y) - f(x, z)| \le L|y-z|$ for all (x, y) and (x, z) in R. Then prove that there exists one, and only one, solution ϕ of $y^{(n)} = f(x, y, y', ..., y^{(n-1)}) \text{ on the interval } I = |x - x_0| \le \min|a, b/m|, (M = N + b + |y_0|)$ Which satisfies $\phi(x_0) = a_1, \phi'(x_0) = a_2, ..., \phi^{(n-1)}(x_0) = a_1(y_0) = (a_1, ..., a_n)$

8

8

8

- d) Let F be a continuous vector-valued function defined on $R:|x-x_0| \le a, |y-y_0| \le b$ (a, b >0) and suppose F satisfies a Lipschitz condition on R. If M is a constant such that $|f(x,y)| \le M$ for all (x,y) in R. Then prove that the successive approximations $\{\phi_k\}, (k=0,1,2...)$ given by $\phi_0(x) = y_0$ converges on the interval $I:|x-x_0| \le \alpha = \min(a, b/m)$, to a solution ϕ of the initial value problem $y' = f(x, y) + y(x_0) = y_0$ on I.
- 5.
- Solve the following,
- a) Verify that the solutions $\phi(x) = e^{-\sin x}$ for the differential equations $y' + (\cos x)y = 0$.
- b) Consider the equation $y'' + \frac{1}{x}y' \frac{1}{x^2}y = 0$. Find two linearly independent solutions for x > 0, and prove that they are linearly independent:
- c) Find all real-valued solution of the

$$\mathbf{y'} = \frac{\mathbf{x} + \mathbf{x}^2}{\mathbf{y} - \mathbf{y}^2}$$

d) Solve the differential equation $y^2y'' = y'$.

8

4

4

4