M.Sc. - I (Mathematics) (NEP Pattern) Semester-I NEP-64-2 / DSE-2 - Paper-I : Real Analysis

	ages : e : Th	e Hours $* 8 0 4 3 *$	GUG/W/23/15116 Max. Marks : 80
	Note	 1. Solve all five questions. 2. All questions carry equal marks. 	
		UNIT – I	
1.	a)	Let $\{f_n\}_{n=1}^{n=\infty}$ be a sequence of real value function on a set E. Then prove converges uniformly on E iff for every $\in > 0$ there exist an integer N such $m \ge N, n \ge N$ $x \in E \Longrightarrow f_m(x) - f_n(x) \le \in$	
	b)	If $f'_n(x)$ exist for each $x \in [a, b]$ and such that $f_n(x_0)$ converges for som $x_0 \in [a, b]$. Then prove that i) $\{f_n\}$ converges uniformly on [a, b] through a function f.	ne point 8
		ii) $f'_n(x) = \lim_{n \to \infty} f'_n(x), a \le x \le b$	
		OR	
	c)	If $\sum_{n=0}^{\infty} a_n = L$ and if $\lim_{n \to \infty} n a_n = 0$. Then prove that $\sum_{n=0}^{\infty} a_n$ converge	es L. 8
	d)	Prove that there exist a real continuous function on the real line which is a differentiable.	nowhere 8
		UNIT – II	
2.	a)	Let A be an open in \mathbb{R}^m . Suppose that the partial derivative $D_j f_i(x)$ of the function of f exist at each point x of A and are continuous on A. Then prodifferentiable at each point of A.	
	b)	State and prove the inverse function theorem.	8
		OR	
	c)	Let $A \subset \mathbb{R}^m$ and $B \subset \mathbb{R}^n$, Let $f : A \to \mathbb{R}^n$ and $g : B \to \mathbb{R}^p$, with $f(A) \subset f(a) = b$., If f is differentiable a and g is differentiable at b. Then prove that function $g \circ f$ is differentiable at a, furthermore, $D(g \circ f)(a) = Dg(b) \cdot Df(a)$. Where the indicated product is matrix multiplication.	t composite
	d)	State and prove implicit function theorem.	8
		UNIT – III	
3.	a)	Let Q be a rectangle ; let $f : Q \rightarrow R$ be a bounded function. Then prove the	Q -
		equality holds if and only if given by $\in > 0$, there exist a corresponding part for which $U(f,P)-L(f,P) < \in$.	artition P of Q

b) Let Q be a rectangle in \mathbb{R}^n ; let $f: Q \to \mathbb{R}$ be a bounded function. Let D be the set of points of Q at which f fails to be continuous. Then prove that $\int_Q f$ exist if and only if D has measure zero in \mathbb{R}^n .

OR

- State and prove Fubini's theorem. c)
- d) Let A be open in \mathbb{R}^n , let $f: A \to \mathbb{R}$ be continuous. Choose a sequence \mathbb{C}_N of compact rectifiable subset of A whose union is A such that $C_N \subset C_{N+1}$ for each N. Then prove that f is integrable over A if and only if sequence $\int_{C_N} |f|$ is bounded. In this $\int_A f = \lim_{N \to \infty} \int_{C_N} f.$

UNIT – IV

- 8 4. Let $I = [a, b]; g: I \rightarrow R$ be a function of class C^1 with $g'(x) \neq 0$ for $x \in (a, b)$. Then the a) set g(I) is a closed set with interval J with end points g(a) and g(b). If $f: J \rightarrow R$ is continuous, then prove that $\int_{g(a)}^{g(b)} f = \int_{a}^{b} (f \cdot g) g'$
 - State and prove change of variable theorem. b)

OR

Let A be open in \mathbb{R}^n ; let $f: A \to \mathbb{R}$ be continuous. Let (ϕ_i) be a partition of unity on A 8 c) having compact support. Then prove that integral $\int_A f$ exists if and only if the series $\sum_{i=1}^{\infty} \left[\int_{A} \phi_{i} |f| \right]$ converges.

d)	 Let h: Rⁿ → Rⁿ be a map such that h(0) = 0. Prove that i) The map h is an isometry if and only if preserves dot products. ii) The map h is an isometry if and only it is orthogonal transformation. 	8
a)	Prove that able summability is regular.	4
b)	Let $A \subset \mathbb{R}^m$; Let $f: A \to \mathbb{R}^n$, if f is differentiable at a, then prove that f is continuous at a.	4
c)	Let I = [0, 1], let f: I \rightarrow R be defined by $\begin{cases} f(x) = 0 \text{ if } x \text{ is rational} \\ f(x) = 1 \text{ if } x \text{ is irrational} \\ \text{Show that f is not integrable over I.} \end{cases}$	4
d)	Write the statement of Existence of a partition of unity.	4

5.

8

8

8

8