Time : Three Hours

P. Pages: 2

GUG/W/23/15115

Max. Marks: 80

Notes : 1. Solve all **five** questions. 2. Each Questions carries equal marks.

UNIT-I

1. 8 Let g(x) be continuous on [a,b], and assume $g([a,b]) \subset [a,b]$ further more, assume a) there is a constant $0 < \lambda < 1$, with $|g(x) - g(y)| \le \lambda |x - y| \forall x, y \in [a, b]$ Then prove that x = g(x) has a unique solution α in [a, b]. Also the iterates $x_n = g(x_{n-1}), n \ge 1$ will converge, to α for any choice of $x_0 in[a, b]$ and $\left|\alpha - x_{n}\right| \leq \frac{\lambda^{n}}{1 - \lambda} \left|x_{1} - x_{0}\right|.$

Find the root of the equation $y(x) = x^3 - 2x - 5 = 0$ b) Which lies between 2 and 3 by using Muller's method.

OR

Apply Newton's method to the following function. c)

$$f(x) = \begin{cases} x^{2/3}, & x \ge 0\\ -x^{2/3}, & x < 0 \end{cases}$$

With the root $\alpha = 0$. What is the behaviour of the iterates? Do they converge and if so, at what rate?

d) Discuss the Muller's method?

UNIT – II

2. a) Prove that for
$$k \ge 0, f[x_0, x_1, \dots, x_k] = \frac{1}{k!h^k} \Delta^k f_0$$

8 b) Find the Polynomial of degree ≤ 2 that passes through the points (0,1), (-1,2) and (1,2)?

OR

State and prove Hermite-Genocchi theorem? 8 c) Show that for any two functions f and g for any two constant α and β d) 8

1

$$\Delta^{r}(\alpha f(x) + \beta g(x)) = \alpha \Delta^{r} f(x) + \beta \Delta^{r} g(x), r \ge 0$$

8

8

8

8

UNIT – III

3.	a)	Let $f(x)$ be continuous for $a \le x \le b$ and let $\in > 0$. Then prove that there is a polynomial	8
		$p(x)$ for which $ f(x)-p(x) \le \epsilon, a \le x \le b$.	

b) Discuss the Gram-Schmidt theorem.

OR

8

8

8

8

4

- c) Prove that for $f; g \in c[a, b]$ i) $|(f,g)| \le ||f||_2 ||g||_2$ ii) $||f+g||_2 \le ||f||_2 + ||g||_2$
- d) Find linear least square approximation of the function. $f(x) = e^{x} on -1 \le x \le 1$

$\mathbf{UNIT} - \mathbf{IV}$

4. a) Evaluate
$$I(f) = \int_0^1 \frac{dx}{1+x}$$
 by using simple Simpson's rule? 8

b) Derive Newton-cotes integration formula for n = 1.

OR

	c)	Obtain the expression for Peano-Kernel error formula.	8
	d)	Obtain the composite trapezoidal rule with error. Find the expression for the asymptotic error?	8
•	a)	Consider Newton's method for finding the positive square root of $a > 0$. Derive $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$	4
	b)	Prove that $\Delta^{r} f(x_{i}) = h^{r} f^{(r)}(\xi_{i})$ for some $x_{i} < \xi_{i} \le x_{i} + r$	4

c) Discuss the Minimax Approximation problem.

d) Evaluate
$$\int_0^1 \frac{e^x - 1}{x} dx$$
.

5.