Notes: 1. Solve all five questions.
2. Each Questions carries equal marks.

UNIT - I

1. a) Let $g(x)$ be continuous on $[a, b]$, and assume $g([a, b]) \subset[a, b]$ further more, assume there is a constant $0<\lambda<1$, with $|g(x)-g(y)| \leq \lambda|x-y| \forall x, y \in[a, b]$
Then prove that $\mathrm{x}=\mathrm{g}(\mathrm{x})$ has a unique solution α in $[\mathrm{a}, \mathrm{b}]$. Also the iterates $\mathrm{x}_{\mathrm{n}}=\mathrm{g}\left(\mathrm{x}_{\mathrm{n}-1}\right), \mathrm{n} \geq 1$ will converge, to α for any choice of x_{0} in $[\mathrm{a}, \mathrm{b}]$ and $\left|\alpha-x_{n}\right| \leq \frac{\lambda^{n}}{1-\lambda}\left|x_{1}-x_{0}\right|$.
b) Find the root of the equation $y(x)=x^{3}-2 x-5=0$

Which lies between 2 and 3 by using Muller's method.

OR

c) Apply Newton's method to the following function.
$f(x)=\left\{\begin{array}{cc}x^{2 / 3}, & x \geq 0 \\ -x^{2 / 3}, & x<0\end{array}\right.$
With the root $\alpha=0$. What is the behaviour of the iterates? Do they converge and if so, at what rate?
d) Discuss the Muller's method?

UNIT - II

2. a) Prove that for $k \geq 0, f\left[x_{0}, x_{1}, \ldots \ldots . ., x_{k}\right]=\frac{1}{k!h^{k}} \Delta^{k} f_{0}$
b) Find the Polynomial of degree ≤ 2 that passes through the points $(0,1),(-1,2)$ and $(1,2)$?

OR

c) State and prove Hermite-Genocchi theorem?
d) Show that for any two functions f and g for any two constant α and β

$$
\Delta^{\mathrm{r}}(\alpha \mathrm{f}(\mathrm{x})+\beta \mathrm{g}(\mathrm{x}))=\alpha \Delta^{\mathrm{r}} \mathrm{f}(\mathrm{x})+\beta \Delta^{\mathrm{r}} \mathrm{~g}(\mathrm{x}), \mathrm{r} \geq 0
$$

3. a) Let $f(x)$ be continuous for $a \leq x \leq b$ and let $\in>0$. Then prove that there is a polynomial $\mathrm{p}(\mathrm{x})$ for which $|\mathrm{f}(\mathrm{x})-\mathrm{p}(\mathrm{x})| \leq \in, \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$.
b) Discuss the Gram-Schmidt theorem.

OR

c) Prove that for $f ; g \in c[a, b]$
i) $\quad|(f, g)| \leq\|f\|_{2}\|g\|_{2}$
ii) $\quad\|f+g\|_{2} \leq\|f\|_{2}+\|g\|_{2}$
d) Find linear least square approximation of the function.

$$
\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}} \text { on }-1 \leq \mathrm{x} \leq 1
$$

UNIT - IV

4. a) Evaluate $I(f)=\int_{0}^{1} \frac{d x}{1+x}$ by using simple Simpson's rule?
b) Derive Newton-cotes integration formula for $\mathrm{n}=1$.

OR

c) Obtain the expression for Peano-Kernel error formula.
d) Obtain the composite trapezoidal rule with error. Find the expression for the asymptotic error?
5. a) Consider Newton's method for finding the positive square root of $\mathrm{a}>0$.

Derive $\mathrm{x}_{\mathrm{n}+1}=\frac{1}{2}\left(\mathrm{x}_{\mathrm{n}}+\frac{\mathrm{a}}{\mathrm{x}_{\mathrm{n}}}\right)$
b) Prove that $\Delta^{r} f\left(x_{i}\right)=h^{r} f^{(r)}\left(\xi_{i}\right)$ for some $x_{i}<\xi_{i} \leq x_{i}+r$
c) Discuss the Minimax Approximation problem.
d) Evaluate $\int_{0}^{1} \frac{\mathrm{e}^{\mathrm{x}}-1}{\mathrm{x}} \mathrm{dx}$.

