M.Sc.- I (Mathematics) (NEP Pattern) Semester-I

NEP-63 / DSC-3 - Major - Paper-III : Linear Algebra
P. Pages : 3

GUG/W/23/15114
Time : Three Hours

Notes: 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) Let V and V^{\prime} be vector spaces over K , and let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ be a linear transformation.
i) if W and W^{\prime} are subspaces of V and v^{\prime} respectively, and $\mathrm{T}(\mathrm{W}) \subseteq \mathrm{W}^{\prime}$, then T induces a linear transformation $\overline{\mathrm{T}}: \mathrm{V} / \mathrm{W} \rightarrow \mathrm{V}^{\prime} / \mathrm{W}^{\prime}$ defined by $\overline{\mathrm{T}}(v+\mathrm{W})=\mathrm{T}(v)+\mathrm{W}^{\prime}$
ii) If T is subjective, then $v / \operatorname{ker} T \simeq V^{\prime}$.

OR

c) Let $\mathrm{V}_{1}, \ldots, \mathrm{V}_{\mathrm{m}}$ be vector spaces over a field K . Then prove that $\mathrm{V}=\mathrm{V}_{1} \oplus$ \qquad $\oplus \mathrm{V}_{\mathrm{m}}$ is finite dimensional if and only if each V_{i} is finite dimensional. In this case $\operatorname{dim} \mathrm{V}_{1} \oplus$ \qquad $\oplus \mathrm{V}_{\mathrm{m}}=\operatorname{dim} \mathrm{V}_{1}+$ \qquad .$+\operatorname{dim} V_{m}$
d) Prove that for two finite dimensional vector space V and V^{\prime} over $K, V \simeq V^{\prime}$ if and only if $\operatorname{dim} V=\operatorname{dim} V^{\prime}$.

UNIT - II

2. a) Let V be a finite dimensional vector space over K of dimension n and let T be a linear operator on V. If $m_{T}(x)=p(x)^{r}$, where $p(x)$ is a monic irreducible polynomial of degree m , then prove that m divides n .
b) Obtain the minimal polynomial for the matrix

$$
\left[\begin{array}{cccc}
1 & 1 & -2 & -2 \\
0 & 1 & 1 & 1 \\
1 & 2 & 1 & 0 \\
-1 & -2 & 0 & 1
\end{array}\right]
$$

OR

c) Prove that the eigenvectors corresponding to distinct eigenvalues of a linear operator are linearly independent.
d) Prove that two diagonalizable operators S and T on V are simultaneously diagonalizable if and only if they commute.

UNIT - III

3. a) Let V be an inner product space over f and let $u, v \in V$. Prove that
i) $\|\mathrm{u} \pm \mathrm{v}\|^{2}=\|\mathrm{u}\|^{2} \pm 2 \operatorname{Re}(\mathrm{u}, \mathrm{v})+\|v\|^{2}$ where Rez denotes the real part of the complex number z .
ii) $\|u+v\|^{2}+\|u-v\|^{2}=2\|u\|^{2}+2\|v\|^{2}$
iii) $\|\lambda u\|=|\lambda|\|u\|$ for all $\lambda \in f$.
iv) $|(u, v)| \leq\|u\|\|v\|$
b) Let $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots, \mathrm{x}_{\mathrm{n}}\right\}$ be a sequence of linearly independent vectors in an inner product space V. Then prove that there is a sequence of orthonormal vectors $\left\{y_{1}, y_{2}, \ldots \ldots.\right\}$ such that for every $n\left\langle x_{1}, x_{2}, \ldots \ldots, x_{n}\right\rangle=\left\langle y_{1}, \ldots . ., y_{n}\right\rangle$

OR

c) Let V and W be finite dimensional inner product spaces and let $\mathrm{T} \in \mathrm{L}(\mathrm{V}, \mathrm{W})$. Then prove that there exists a unique linear mapping $\mathrm{T}^{*}=\mathrm{W} \rightarrow \mathrm{V}$ such that for all $v \in \mathrm{~V}$ and $\mathrm{W} \in \mathrm{W}$ $(\mathrm{Tv}, \mathrm{w})=\left(\mathrm{v}, \mathrm{T}^{*} \mathrm{w}\right)$
d) Let T be a unitary operator on $V, \operatorname{dim} V=n$. If B_{1} and B_{2} are ordered orthonormal bases of V , then prove that $\mathrm{B}_{2}[\mathrm{~T}]_{\mathrm{B}_{1}}$ is a unitary matrix.

UNIT - IV

4. a) Prove that if a bilinear form is reflexive then it is either symmetric or alternating.
b) Let A and B be invertible matrices of the same size. Then prove that the following are equivalent:
i) A and B are congruent
ii) $\quad \mathrm{A}^{-1}$ and B^{-1} are congruent
iii) A^{+}and B^{+}are congruent.

OR

c) Prove that a symmetric bilinear form on a finite dimensional vector space over a field K of characteristic not equal to 2 is diagonalizable.
d) Let ϕ be a reflexive bilinear form on a vector space V over K . If S is a finite dimensional
5. a) Let W_{1} and W_{2} be subspaces of a vector space V. Then prove that $W_{1} \cup W_{2}$ is a subspace of V if and only if $\mathrm{W}_{1} \subseteq \mathrm{~W}_{2}$ or $\mathrm{W}_{2} \subseteq \mathrm{~W}_{1}$.
b) Let V be a finite dimensional vector space over K and let T be a linear operator on V , then prove that a scalar λ in K is an eigen value of t if and only if $\operatorname{det}(T-\lambda I)=0$.
c) Let W be a subspace of a finite dimensional inner product space V . Then prove that $\mathrm{V}=\mathrm{W} \oplus \mathrm{W}^{\perp}$.
d) Define:
i) Bilinear form
ii) Bilinear space

