M.Sc. - I (Mathematics) (NEP Pattern) Semester-I NEP-62 / DSC-2 - Paper-II : Topology

P. P Tim	Pages : ne : Thr	2 ree Hours	GUG/W/23/15113 Max. Marks : 80
	Note	es : 1. Solve all the five questions. 2. All questions carry equal marks.	
		UNIT – I	
1.	a)	Prove that the union of a denumerable number of denumerable sets is a	denumerable set. 8
	b)	Prove that $2^a > a$ for every cardinal number a.	8
		OR	
	c)	Prove that the set of all real numbers is uncountable.	8
	d)	Prove that every infinite set contains a denumerable subset.	8
		UNIT – II	
2.	a)	Let $X = 1N$, the set of positive integers, and let τ be the family consisting subsets of the form {1, 2,,n}. Show that τ is a topology for X.	ng of ϕ, X , and all 8
	b)	For any set E in a topological space, prove that $c(E) = E \bigcup d(E)$.	8
		OR	
	c)	Let (X, τ) be a topological space & X* is a subset of X. Then prove the topology for X*, where τ * is an inducted or relative topology for X*.	at τ* is a 8
	d)	Prove that a family β of sets is a base for a topology for the set $X = \bigcup \{B \\ \text{only if for every } B_1, B_2 \in \beta \text{ and every } x \in B_1 \cap B_2, \text{ there exists a } B \in \beta \\ x \in B \subseteq B_1 \cap B_2.$	B : $\mathbf{B} \in \beta$). If and B such that
		UNIT – III	
3.	a)	If C is a connected subset of a topological space (X, τ) which has a sep then prove that either $C \subseteq A$ or $C \subseteq B$.	aration $X = A B$, 8
	b)	If f is a continuous mapping of (X, τ) into (X^*, τ^*) , then prove that f m compact subset of X onto a compact subset of X*.	haps every 8

OR

	c)	If f is a homeomorphism of X onto X^* , then prove that f maps every isolated subset of X onto an isolated subset of X^* .			
	d)	Prove that a compact subset of a topological space is countably compact.	8		
$\mathbf{UNIT} - \mathbf{IV}$					
4.	a)	Prove that a topological space X is a To-space iff the closures of distinct points are distinct.	8		
	b)	Prove that a topological space X satisfying the first axiom of countability is a Hausdorff space iff every convergent sequence has a unique limit.	8		
OR					
	c)	Prove that a topological space X is regular iff for every point $x \in X$ and open set G containing x there exists an open set G^* such that $x \in G^*$ and $c(G)^* \subseteq G$.	8		
	d)	Prove that in a T_1 – space X, a point x is a limit point of a set E iff every open set containing x contains an infinite number of distinct points of E.	8		
5.	a)	Define : cardinal number, & sum & product of cardinal n umbers.	4		
	b)	Define : Topological space and open sets.	4		
	c)	Define : Continuous functions and homeomorphisms.	4		
	d)	Define : First axiom space & second axiom space.	4		
