M.Sc. First Year (Mathematics) (NEP Pattern) Semester-I NEP-61 / DSC-1 - Paper-I - Advanced Abstract Algebra

P. Pages : 2 Time : Three Hours		2 aree Hours $ \begin{array}{c} & & \\ & $	GUG/W/23/15112 Max. Marks : 80	
	Note	es : 1. Solve all five questions. 2. Each question carry equal marks.		_
		UNIT – I		
1.	a)	Let H and K be normal subgroups of G and $K \subset H$. Then prove that $(G/K)/(H/K) \cong G/H$.		8
	b)	 Let G be a group, and let G' be the derived group of G. Then prove that i) G' is a normal subgroup of G. ii) G/G' is abelian. iii) If H is a normal subgroup of G, then G/H is abelian if and only if G' 	⊂H.	8
		OR		
	c)	Let $\phi: G \to G'$ be a homomorphism of groups. Then prove that $G / \text{Ker } \phi$	$\phi \cong \operatorname{Im} \phi$.	8
	d)	Let G be a finite group acting on a finite set X. Then prove that the number X under G is $k = \frac{1}{ G } \sum_{g \in G} X_g $.	er k of orbits in	8
		UNIT – II		
2.	a)	Prove that any two composition series of a finite group are equivalent.		8
	b)	Prove that a group G is nilpotent if and only if G has a normal series $\{e\} = G_0 \subset G_1 \subset \cdots \subset G_m = G$ such that $G_i / G_{i-1} \subset Z(G / G_{i-1})$ for all	i = 1,,m.	8

OR

c)	Prove that the alternating group A_n is generated by the set of all 3-cycles in S_n .	8
d)	If a permutation $\sigma \in S_n$ is a product of r transpositions and also a product of s	8
	transpositions, then prove that r and s are either both even or both odd.	

UNIT – III

- a) Let G be a finite group, and let p be a prime. If p^m divides |G|, then prove that G has a subgroup of order p^m.
 - b) Let A be a finite abelian group, and let p be prime. If p divides |A|, then prove that A has an element of order P.

(Ľ	R
L	Ј.	

	c)	Let G be a group of order pq, where p and q are prime numbers such that $p > q$ and q does not divide $(p - 1)$. Then prove that G is cyclic.	8
	d)	Prove that there are no simple groups of orders 63,56, and 36.	8
		UNIT – IV	
4.	a)	Let f be a homomorphism of a ring R into a ring S with kernel N. Then prove that $R / N \cong Imf$.	8
	b)	Prove that in a nonzero commutative ring with unity, an ideal M is maximal if and only if R/M is a field.	8
		OR	
	c)	If a ring R has unity, then prove that every ideal I in the matrix ring R_n is of the form A_n , where A is some ideal in R.	8
	d)	If R is a commutative ring, then prove that an ideal P in R is prime if and only if $ab \in P$, $a \in R$, $b \in R$ implies $a \in P$ or $b \in P$.	8
5.	a)	Define Normal subgroup and normalizer of a nonempty subset S of a group.	4
	b)	Define solvable group and nilpotent group.	4
	c)	State first, second and third Sylow theorems.	4
	d)	Define : Prime ideal and maximal ideal.	4
