M.Sc.- II (Mathematics) New CBCS Pattern Semester-IV PSCMTH20A - Optional : Operations Research-II

P. F Tin	Pages : ne : Th	2 ree Hours	7 3 6 1 *	GUG/W/23/13775 Max. Marks : 100				
	Note	s: 1. Solve all the five question: 2. Each question carry equal	marks.					
			UNIT – I					
1.	a)	Solve the ILPP using the cutting pla Maximize $z = 3x_1 + x_2 + 3x_3$	ane algorithm: subject to the constraints:	10				
	b)	$x_1 + 2x_2 + x_3 \le 4, \ 4x_2 - 3x_3 \le 2, \ x_3$ Solve the mixed ILPP: Maximize $z = 4x_2 + 6x_2 + 2x_3$	$1 - 3x_2 + 2x_3 \le 3$, x_1, x_2 & 3 subject to the constraints	 x₃ all are non zero integers. 10 				
	$4x_1 - 4x_2 \le 5$, $-x_1 + 6x_2 \le 5$, $-x_1 + x_2 + x_3 \le 5$, $x_1, x_2, x_3 \ge 0$, $x_1 \& x_3$ are integers.							
			OR					
	c)	Solve the mixed IPP using Gomory Maximize $z = x_1 + x_2$ subject to	's cutting plane method:	10				
	d)	Constraints : $3x_1 + 2x_2 \le 5$, $x_2 \le 2$, Use branch & bound method to solv Maximize $z = 2x_1 + x_2$ subject to $x_1 \le 3/2$, $x_2 \le 3/2$, $x_1x_2 \ge 0$	$x_1, x_2 \ge 0$ and are intege we the ILPP: constraints : & are integers.	rs. 10				
			UNIT – H					
2.	a)	Use simplex method to solve the ge Minimize $z = p_1d_{\overline{1}} + p_2d_{\overline{2}} + 2p_2d_{\overline{3}}$. Subject to constraints: $10x_1 + 10x_2 + d_1^ d_1^+ = 400, x_1 + 10x_2 + 10$	pal programming problem: + $p_3d_1^+$ $d_2^- = 40$,	10				
	b)	$x_2 + d_3^- = 30, x_1, x_2, d_1^+, d_1^-, d_2^-$ Use revised simplex method to solv LPP : maximize $z = 3x_1 + 2x_2 + 5x_1$ $x_1 + 2x_2 + x_3 \le 430, 3x_1 + 2x_2 \le 40$	$\overline{,}$ d ₃ ⁻ ≥ 0. we the 3 subject to the constraints 50, x ₁ +4x ₂ ≤ 420, x ₁ , x ₂ ,	10 $x_3 \ge 0$				
			OR					
	c)	Use revised simplex method to solv LPP : maximize $z = 3x_1 + 5x_2$ subj	'e the ect to the constraints :	10				
		$x_1 \le 4, x_2 = 6, 3x_1 + 2x_2 \le 18, \& x_1 \le 10^{-1}$	$_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$					
	d)	Solve the LPP : Minimize $z = \frac{-6x_1}{2x_2}$	$\frac{-5x_2}{1+7}$	10				
		Subject to constraints $x_1 + 2x_2 \le 3$,	$3x_1 + 2x_2 \le 6, x_1, x_2 \ge 0$					

UNIT – III

- 3. a) Explain how the optimal sequence is obtained in processing 2 Jobs through k machines. 10
 - b) Use graphical method to minimize the time added to process the following jobs on the machines shown i.e. for each machine find the job which should done first. Also find the total time elapsed to complete both the jobs:

Job 1	{sequence	Α	В	С	D	Е
	time	3	4	2	6	2
Job 2	{sequence	В	С	А	D	Е
	time	5	4	3	2	6

OR

- c) A petrol pump station has two pumps. The service times follows the exponential distribution 10 with a mean of 4 minutes & cars arrive for service in a Poisson process at the rate of 10 cars per hour. Find the probability that a customer has to wait for service. What proportion of time the pumps remain idle?
- d) Explain the probability distributions in queueing systems.

UNIT - IV

10

5

5

- 4. a) Obtain the set of necessary conditions for the NLPP: minimize $z = kx^{-1}y^{-2}$ subject to constraints : $x^2 + y^2 - a^2 = 0$ with $x \ge 0$, $y \ge 0$ & hence find the minimum value of z.
 - b) Obtain the necessary & sufficient conditions for the optimum solution of the NLPP: 10 minimize $z = f(x_1, x_2)$

 $= 3e^{2x_1} + 1 + 2e^{x_3+5}$

subject to constraints $x_1 + x_2 = 7$, $x_1, x_2 \ge 0$

OR

- c) Solve graphically the NLPP: 10 Maximize $z = 2x_1 + 3x_2$ subject to the constraints : $x_1x_2 \le 8$, $x_1^2 + x_2^2 \le 20$, $x_1, x_2 \ge 0$.
- d) Use Wolfe's method to solve the QPP: maximize $z = 2x_1 + 3x_2 2x_1^2$ subject to the constraints : $x_1 + 4x_2 \le 4$, $x_1 + x_2 \le 2$, $x_1, x_2 \ge 0$
- 5. a)State the 7 steps of fractional cut method All integer LPP.5
 - b) Explain the formulation of linear goal programming problem. 5
 - c) State the basic terms used in sequencing.
 - d) Explain the necessary conditions for a general NLPP.
