M.Sc.- II (Mathematics) New CBCS Pattern Semester-IV **PSCMTH19A - (Optional) : Fluid Dynamics-II**

P. Pages : 2 Time : Three Hour			GUG/W/23/13770 Max. Marks : 100
	Note	es : 1. Solve all the five questions. 2. Each question carry equal marks.	
		UNIT – I	
1.	a)	Explain the rate of strain quadric & principal stresses.	10
	b)	Discuss the problem of steady motion between parallel planes.	10
		OR	
	c)	Explain the steady viscous flow in tubes of uniform cross-section.	10
	d)	Discuss the steady flow past a fixed sphere.	10
		UNIT – II	
2.	a)	Explain the equations of motion of a conducting fluid.	10
	b)	Obtain the relation $\frac{\partial(\omega, \psi)}{\partial(\mathbf{R}, \mathbf{Z})} = 0$ for the Ferraro's law of isorotation.	10
		OR	
	c)	Discuss the Maxwell's electromagnetic field equations: Medium at rest.	10
	d)	Explain the simplification of the electromagnetic filed equations.	10
		UNIT – III	
3.	a)	Obtain the integral equation due to Kerman.	10
	b)	Discuss the Prandtl's boundary layer.	10
		OR	
	c)	Discuss in detail the Raynolds number & its applications.	10
	d)	Obtain the universal equation in dimensional analysis.	10
		UNIT – IV	
4.	a)	Explain the features of the double longitudinal & lateral correlations in a h turbulence.	nomogeneous 10

ł)	Obtain the equations of motion for turbulence flow.	10
		OR	
C	c)	Discuss the change in double velocity correlations with time.	10
C	1)	Discuss the macro or integral scale of turbulence.	10
8	a)	Define:	5
		i) Components of stress tensor.	
		ii) Normal or direct stresses.	
ł))	Explain shortly MHD.	
C	c)	State & give the meanings of the dimensionless quantities.	
C	d)	Define:	5
		i) The value of velocity.	
		ii) The average value of the velocity.	

5.