Notes: 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) Prove that Singular integral is also a solution of the first order partial differential equation.
$x\left(y^{2}-z^{2}\right) p-y\left(z^{2}+x^{2}\right) q=\left(x^{2}+y^{2}\right) z$

OR

c) Prove that a necessary and sufficient condition that the Pfaffian differential equation $\bar{X} \cdot d \bar{r}=P(x, y, z) d x+Q(x, y, z) d y+R(x, y, z) d z=0$ be integrable is that $(\bar{X} \cdot \operatorname{curl} \bar{X})=0$
d) Find a complete integral of the partial differential equation.

$$
f=x^{2} p^{2}+y^{2} q^{2}-4=0
$$

UNIT - II

2. a) Solve the initial value problem for the quasi-linear equation $z_{x}+z_{y}=1$ containing the initial data curve $\mathrm{c}: \mathrm{x}_{0}=\mathrm{s}, \mathrm{y}_{0}=\mathrm{s}, \mathrm{z}_{0}=\frac{1}{2} \mathrm{~s}$ for $0 \leq \mathrm{s} \leq 1$.
b) Find the integral surface of the equation

$$
(2 x y-1) p+\left(z-2 x^{2}\right) q=2(x-y z)
$$

Which passes through the line $\mathrm{x}_{0}(\mathrm{~s})=1, \mathrm{y}_{0}(\mathrm{~s})=0$ and $\mathrm{z}_{0}(\mathrm{~s})=\mathrm{s}$.

OR

c) Find by the method of characteristics, the integral surface of $p q=x y$ which passes through the curve $\mathrm{z}=\mathrm{x}, \mathrm{y}=0$.
d) Consider the partial differential equation $f(x, y, z, p, q)=0$ where f has continuous second order derivatives with respect to its variables $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{p}$ and q , and at every point either $\mathrm{f}_{\mathrm{p}} \neq 0$ or $f_{q} \neq 0$. Suppose that the initial values $z=z_{0}(s)$ are specified along the initial curve $\Gamma_{0}: x=x_{0}(s), y=y_{0}(s), a \leq s \leq b$, where $x_{0}(s), y_{0}(s)$ and $z_{0}(s)$ have continuous second order derivatives. Suppose $\mathrm{p}_{0}(\mathrm{~s})$ and $\mathrm{q}_{0}(\mathrm{~s})$ have been determined such that
$\mathrm{f}\left(\mathrm{x}_{0}(\mathrm{~s}), \mathrm{y}_{0}(\mathrm{~s}), \mathrm{z}_{0}(\mathrm{~s}), \mathrm{p}_{0}(\mathrm{~s}), \mathrm{q}_{0}(\mathrm{~s})\right)=0$ and $\frac{\mathrm{dz}_{0}}{\mathrm{ds}}=\mathrm{p}_{0}=\frac{\mathrm{dx}_{0}}{\mathrm{ds}}+\mathrm{q}_{0} \frac{\mathrm{dy}_{0}}{\mathrm{ds}}$, where p_{0} and q_{0} are continuously differentiable functions of s . If, in addition, the five functions $\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}, \mathrm{p}_{0}$ and q_{0} satisfy $f_{q} \frac{d x_{0}}{d s}-f_{p} \frac{\mathrm{dy}_{0}}{d s} \neq 0$ then prove that in some neighbourhood of each point of the initial curve there exists one and only one solution $z=z(x, y)$ of $f(x, y, z, p, q)=0$ such that $\mathrm{z}\left(\mathrm{x}_{0}(\mathrm{~s}), \mathrm{y}_{0}(\mathrm{~s})\right)=\mathrm{z}_{0}(\mathrm{~s}), \mathrm{z}_{\mathrm{x}}\left(\mathrm{x}_{0}(\mathrm{~s}), \mathrm{y}_{0}(\mathrm{~s})\right)=\mathrm{p}_{0}(\mathrm{~s}), \mathrm{zy}\left(\mathrm{x}_{0}(\mathrm{~s}), \mathrm{y}_{0}(\mathrm{~s})\right)=\mathrm{q}_{0}(\mathrm{~s})$.

UNIT - III

3. a) Derive an equation governing small transverse vibrations of an elastic string.
b) Reduce the equation $u_{x x}-x^{2} u_{y y}=0$ to a Canonical form.

OR

c) Obtain D'Alembert's solution of the one dimensional wave equation which describes the vibrations of an infinite string.
d) Prove that for the equation

$$
\mathrm{Lu}=\mathrm{u}_{\mathrm{xy}}+\frac{\mathrm{u}}{4}=0
$$

The Riemann function is
$v(x, y ; \alpha, \beta)=J_{0}(\sqrt{(x-\alpha)(y-\beta)})$, where J_{0} is the Bessel's function of the first kind of order zero.

UNIT - IV

4. a) Suppose that $u(x, y)$ is harmonic in a bounded domain D and continuous in $\bar{D}=D U B$.

Then prove that u attains its maximum on the boundary B of D.
b) Find the solution of the problem

$$
\begin{aligned}
& \nabla^{2} \mathrm{u}=0,-\infty<\mathrm{x}<\infty, \mathrm{y}>0 \\
& \mathrm{u}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x}),-\infty<\mathrm{x}<\infty,
\end{aligned}
$$

Such that u is bounded as $\mathrm{y} \rightarrow \infty, \mathrm{u}$ and u_{x} vanish as $|\mathrm{x}| \rightarrow \infty$.

OR

c) Solve $\mathrm{u}_{\mathrm{t}}=\mathrm{u}_{\mathrm{xx}}, 0<\mathrm{x}<\ell, \mathrm{t}>0$

$$
\begin{aligned}
& \mathrm{u}(0, \mathrm{t})=\mathrm{u}(\ell, \mathrm{t})=0, \\
& \mathrm{u}(\mathrm{x}, 0)=\mathrm{x}(\ell-\mathrm{x}), 0 \leq \mathrm{x} \leq \ell
\end{aligned}
$$

d) Show that the surfaces

$$
x^{2}+y^{2}+z^{2}=c x^{2 / 3}
$$

Can form an equipotential family of surfaces, and find the general form of the potential function.
5. a) Find a complete integral of

$$
\mathrm{f}(\mathrm{p}, \mathrm{q})=\mathrm{p}+\mathrm{q}-\mathrm{pq}=0
$$

b) Discuss the method to find integral surface a semi - linear partial differential equation.
c) Define:
i) Second - order semi - linear partial differential equation
ii) Regular solution of second order semi - linear p.d.e.
d) State:
i) The Dirichlet problem
ii) The Neumann problem

