P. Pages : 3

Time : Three Hours

* 2 5 0 4 *

Max. Marks : 100

GUG/S/23/13768

Notes : 1. Solve **all five** questions. 2. All questions carry equal marks.

UNIT – I

- 1. a) Prove that Singular integral is also a solution of the first order partial differential equation. 10
 - b) Find the general solution of

$$x(y^2-z^2)p-y(z^2+x^2)q = (x^2+y^2)z$$

OR

- c) Prove that a necessary and sufficient condition that the Pfaffian differential equation 10 $\overline{X} \cdot d\overline{r} = P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz = 0$ be integrable is that $(\overline{X} \cdot \text{curl } \overline{X}) = 0$
- d) Find a complete integral of the partial differential equation.

$$f = x^2 p^2 + y^2 q^2 - 4 = 0$$

UNIT – II

- 2. a) Solve the initial value problem for the quasi-linear equation $z_x + z_y = 1$ containing the 10 initial data curve $c: x_0 = s, y_0 = s, z_0 = \frac{1}{2}s$ for $0 \le s \le 1$.
 - b) Find the integral surface of the equation

 $(2xy-1)p+(z-2x^2)q=2(x-yz)$

Which passes through the line $x_0(s) = 1$, $y_0(s) = 0$ and $z_0(s) = s$.

OR

- c) Find by the method of characteristics, the integral surface of pq = xy which passes 10 through the curve z = x, y = 0.
- d) Consider the partial differential equation f (x, y, z, p, q) = 0 where f has continuous second order derivatives with respect to its variables x, y, z, p and q, and at every point either f_p ≠ 0 or f_q ≠ 0. Suppose that the initial values z = z₀(s) are specified along the initial curve [0: x = x₀(s), y = y₀(s), a ≤ s ≤ b, where x₀(s), y₀(s) and z₀(s) have continuous second order derivatives. Suppose p₀(s) and q₀(s) have been determined such that

1

10

10

10

.

f (x₀(s), y₀(s), z₀(s), p₀(s), q₀(s)) = 0 and $\frac{dz_0}{ds} = p_0 = \frac{dx_0}{ds} + q_0 \frac{dy_0}{ds}$, where p₀ and q₀ are continuously differentiable functions of s. If, in addition, the five functions x₀, y₀, z₀, p₀ and q₀ satisfy $f_q \frac{dx_0}{ds} - f_p \frac{dy_0}{ds} \neq 0$ then prove that in some neighbourhood of each point of the initial curve there exists one and only one solution z = z(x, y) of f(x, y, z, p, q) = 0 such that $z(x_0(s), y_0(s)) = z_0(s), z_x(x_0(s), y_0(s)) = p_0(s), zy(x_0(s), y_0(s)) = q_0(s)$.

UNIT – III

3. a) Derive an equation governing small transverse vibrations of an elastic string.10b) Reduce the equation
$$u_{xx} - x^2 u_{yy} = 0$$
 to a Canonical form.10

OR

- c) Obtain D'Alembert's solution of the one dimensional wave equation which describes the 10 vibrations of an infinite string.
- d) Prove that for the equation

$$Lu = u_{xy} + \frac{u}{4} = 0$$

The Riemann function is

 $v(x, y; \alpha, \beta) = J_0(\sqrt{(x - \alpha)(y - \beta)})$, where J_0 is the Bessel's function of the first kind of order zero.

UNIT – IV

- 4. a) Suppose that u(x, y) is harmonic in a bounded domain D and continuous in $\overline{D} = DUB$. 10 Then prove that u attains its maximum on the boundary B of D.
 - b) Find the solution of the problem

$$\nabla^2 \mathbf{u} = 0, -\infty < \mathbf{x} < \infty, \ \mathbf{y} > 0$$
$$\mathbf{u}(\mathbf{x}, 0) = \mathbf{f}(\mathbf{x}), -\infty < \mathbf{x} < \infty,$$

Such that u is bounded as $y \to \infty$, u and u_x vanish as $|x| \to \infty$.

OR

- c) Solve $u_t = u_{xx}$, $0 < x < \ell, t > 0$ $u(0,t) = u(\ell,t) = 0$, $u(x,0) = x(\ell-x), 0 \le x \le \ell$
- d) Show that the surfaces

X

$$x^2 + y^2 + z^2 = cx^{2/3}$$

Can form an equipotential family of surfaces, and find the general form of the potential function.

2

10

10

10

10

5. a) Find a complete integral of

f(p,q) = p + q - pq = 0

b) Discuss the method to find integral surface a semi – linear partial differential equation.

5

5

5

5

c) Define:

- i) Second order semi linear partial differential equation
- ii) Regular solution of second order semi linear p.d.e.
- d) State:
 - i) The Dirichlet problem
 - ii) The Neumann problem
