P. Pages : 2 Time : Three Hours

Notes : 1. Solve all **five** questions.

2. All questions carry equal marks.

UNIT – I

1. a) Let z=f(x, y, a) be a one-parameter family of solutions of the first order partial differential 10 equation f(x, y, z, p, q) = 0. Then show that the envelope of this one parameter family, if it exists, is also a solution of the partial differential equation.

b) Find the general integral of the partial differential equation. $2x(y+z^2)p+y(2y+z^2)q=z^3$

OR

c) Let u(x, y) and v(x, y) be two functions of x and y such that $\frac{\partial v}{\partial y} \neq 0$. If further, $\frac{\partial(u, v)}{\partial(x, y)} = 0$, then prove that there exists a relation F(u, v) = 0 between u and v not involving x and y explicitly.

d) Find a com	lete integral of the equation	$p^2x + q^2y = z$ by Jacobi's method.	10
---------------	-------------------------------	---------------------------------------	----

UNIT – II

- 2. a) Solve the Cauchy problem for $2z_x + yz_y = z$ for the initial data curve $c: x_0 = s, y_0 = s^2, z_0 = s, 1 \le s \le 2$
 - b) Prove that if an element $(x_0, y_0, z_0, p_0, q_0)$ is common to both an integral surface **10** z = z(x, y) and a characteristics strip, then the corresponding characteristics curve lies completely on the surface.

OR

- c) Find a complete integral of the equation $(p^2 + q^2)x = pz$, and the integral surface containing the curve. $c: x_0 = 0, y_0 = s^2, z_0 = 2s$
- d) Find the solution of $z = p^2 q^2$ which passes through the curve $c: x_0 = s, y_0 = 0, z_0 = -\frac{1}{4}s^2$ 10

Max. Marks: 100

10

UNIT – III

3.	a)	Derive the second order partial differential equation which describes the temperature distribution in a homogeneous isotropic solid.				
	b)	Reduce the equation $u_{xx} + x^2 u_{yy} = 0$ to a canonical form.	10			
	OR					
	c)	Obtain D'Alembert's solution of the one dimensional wave equation which describes the vibrations of a semi-infinite string.	10			
	d)	Solve	10			
		$y_{tt} - c^2 y_{xx} = 0, 0 < x < 1, t > 0,$				
		y(0,t) = y(1,t) = 0				
		$y(x,0) = 0, 0 \le x \le 1$				
		$y_t(x,0) = x^2, \ 0 \le x \le 1$				
		UNIT – IV				
4.	a)	Prove that the solution of the Neumann problem is unique upto the addition of a constant.	10			
	b)	Show that the solution of the Dirichlet problem is stable.	10			
		OR				
	c)	Find the solution of the problem.	10			
		$\nabla^2 \mathbf{u} = 0, -\infty < \mathbf{x} < \infty, \mathbf{y} > 0$				
		$u_y(x,0) = g(x), -\infty < x < \infty$				
		Such that u is bounded as $y \to \infty$, u and u_x vanish as $ x \to \infty$ and $\int_{-\infty}^{\infty} g(x) dx = 0$				

d)	Prove that the solution $u(x, t)$ of the differential equation $u_t - ku_{xx} = F(x, t), 0 < x < l, t > 0$	10
	Satisfying the initial condition. $u(x, 0) = f(x), 0 \le x \le \ell$ and the boundary condition $u(0,t) = u(\ell,t) = 0, t \ge 0$ is unique.	
a)	Find a complete integral of the p. d. e. z = px + qy + pq	5

b) Find analytic expression for the Monge cone at (x_0, y_0, z_0) .

c) Define: 5 i) Analytic function. ii) Two dimensional Laplace's equation .

5

d) Prove that the solution of Dirichlet problem, if exists is unique. 5

5.