P. Pages : 2

Time : Three Hours

GUG/W/23/13768
Max. Marks : 100

Notes: 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) Let $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{a})$ be a one-parameter family of solutions of the first order partial differential equation $f(x, y, z, p, q)=0$. Then show that the envelope of this one parameter family, if it exists, is also a solution of the partial differential equation.
b) Find the general integral of the partial differential equation.
$2 x\left(y+z^{2}\right) p+y\left(2 y+z^{2}\right) q=z^{3}$

OR

c) Let $u(x, y)$ and $v(x, y)$ be two functions of x and y such that $\frac{\partial v}{\partial y} \neq 0$. If further, $\frac{\partial(u, v)}{\partial(x, y)}=0$, then prove that there exists a relation $F(u, v)=0$ between u and v not involving x and y explicitly.
d) Find a complete integral of the equation $p^{2} x+q^{2} y=z$ by Jacobi's method.

UNIT - II

2. a) Solve the Cauchy problem for $2 z_{x}+y z_{y}=z$ for the initial data curve $\mathrm{c}: \mathrm{x}_{0}=\mathrm{s}, \mathrm{y}_{0}=\mathrm{s}^{2}, \mathrm{z}_{0}=\mathrm{s}, 1 \leq \mathrm{s} \leq 2$
b) Prove that if an element $\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}, \mathrm{p}_{0}, \mathrm{q}_{0}\right)$ is common to both an integral surface $\mathrm{z}=\mathrm{z}(\mathrm{x}, \mathrm{y})$ and a characteristics strip, then the corresponding characteristics curve lies completely on the surface.

OR

c) Find a complete integral of the equation $\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right) \mathrm{x}=\mathrm{pz}$,
and the integral surface containing the curve.
$\mathrm{c}: \mathrm{x}_{0}=0, \mathrm{y}_{0}=\mathrm{s}^{2}, \mathrm{z}_{0}=2 \mathrm{~s}$
d) Find the solution of $\mathrm{z}=\mathrm{p}^{2}-\mathrm{q}^{2}$ which passes through the curve

$$
\mathrm{c}: \mathrm{x}_{0}=\mathrm{s}, \mathrm{y}_{0}=0, \mathrm{z}_{0}=-\frac{1}{4} \mathrm{~s}^{2}
$$

3. a) Derive the second order partial differential equation which describes the temperature distribution in a homogeneous isotropic solid.
b) Reduce the equation $u_{x x}+x^{2} u_{y y}=0$ to a canonical form.

OR

c) Obtain D'Alembert's solution of the one dimensional wave equation which describes the vibrations of a semi-infinite string.
d) Solve
$y_{t t}-c^{2} y_{x x}=0,0<x<1, t>0$,
$y(0, t)=y(1, t)=0$
$y(x, 0)=0, \quad 0 \leq x \leq 1$
$y_{t}(x, 0)=x^{2}, 0 \leq x \leq 1$

UNIT - IV

4. a) Prove that the solution of the Neumann problem is unique upto the addition of a constant.
b) Show that the solution of the Dirichlet problem is stable.

OR

c) Find the solution of the problem.
$\nabla^{2} u=0,-\infty<x<\infty, y>0$
$\mathrm{u}_{\mathrm{y}}(\mathrm{x}, 0)=\mathrm{g}(\mathrm{x}),-\infty<\mathrm{x}<\infty$
Such that u is bounded as $y \rightarrow \infty, u$ and u_{x} vanish as $|x| \rightarrow \infty$ and $\int_{-\infty}^{\infty} g(x) d x=0$
d) Prove that the solution $u(x, t)$ of the differential equation
$\mathrm{u}_{\mathrm{t}}-\mathrm{ku}_{\mathrm{xx}}=\mathrm{F}(\mathrm{x}, \mathrm{t}), 0<\mathrm{x}<\ell, \mathrm{t}>0$
Satisfying the initial condition.
$\mathrm{u}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x}), 0 \leq \mathrm{x} \leq \ell$
and the boundary condition $\mathrm{u}(0, \mathrm{t})=\mathrm{u}(\ell, \mathrm{t})=0, \mathrm{t} \geq 0$ is unique.
5. a) Find a complete integral of the p.d.e.
$\mathrm{z}=\mathrm{px}+\mathrm{qy}+\mathrm{pq}$
b) Find analytic expression for the Monge cone at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$.
c) Define:
i) Analytic function.
ii) Two dimensional Laplace's equation .
d) Prove that the solution of Dirichlet problem, if exists is unique.

