M.Sc.-II (Mathematics) (New CBCS Pattern) Semester - IV
 PSCMTH16 - Dynamical Systems

P. Pages : 2

GUG/S/23/13767
Time : Three Hours
$\star 2503 \star$
Max. Marks : 100

Notes: 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) Let the function $\mathrm{f}: \mathrm{W} \rightarrow \mathrm{E}$ be C^{1}. Then prove that f is locally Lipschitz.
b) Let a C^{1} map $f: W \rightarrow E$ be given. Suppose two solutions $u(t), v(t)$ of $x^{1}=f(x)$ are defined on the same open interval J containing to and satisfy $u\left(t_{0}\right)=v\left(t_{0}\right)$ then prove that $u(t)=v(t)$ for all $t \in J$.

OR

c) Let $\mathrm{W} \subset \mathrm{E}$ be open, Let $\mathrm{f}: \mathrm{W} \rightarrow \mathrm{E}$ be a C^{1} map. Let $\mathrm{y}(\mathrm{t})$ be a solution on a maximal open interval $\mathrm{J}=(\alpha, \beta) \subset \mathrm{R}$ with $\beta<\infty$. Then prove that given any compact set $\mathrm{K} \subset \mathrm{W}$, there is some $\mathrm{t} \in(\alpha, \beta)$ with $\mathrm{y}(\mathrm{t}) \notin \mathrm{K}$.
d) Prove that Ω is an open set in $\mathrm{R} \times \mathrm{W}$ and $\phi: \Omega \rightarrow \mathrm{W}$ is a continuous map.

UNIT - II

2. a) Discuss the motion of pendulum moving in a vertical plane as an example of non-linear sink.
b) Let $\overline{\mathrm{x}}$ be an isolated minimum of V . Then prove that $\overline{\mathrm{x}}$ is an asymptotically stable equilibrium of the gradient system $x^{\prime}=-\operatorname{grad} V(x)$

OR

c) There exists $\delta>0$ such that if U is the closed ball $\mathrm{B}_{\delta}(0) \subset \mathrm{W}$, then prove that for all $z=(x, y) \in C \cap U$,
a) $\left\langle\mathrm{x}, \mathrm{f}_{1}(\mathrm{x}, \mathrm{y})\right\rangle-\left\langle\mathrm{y}, \mathrm{f}_{2}(\mathrm{x}, \mathrm{y})\right\rangle>0$ if $\mathrm{x} \neq 0$ and
b) There exists $\alpha>0$ with $\langle\mathrm{f}(\mathrm{z}), \mathrm{z}\rangle \geq \alpha|\mathrm{z}|^{2}$
d) Prove that Let $\mathrm{V}: \mathrm{W} \rightarrow \mathrm{R}$ be a C^{2} function (that is, $\mathrm{DV}: \mathrm{W} \rightarrow \mathrm{E}^{*}$ is C^{1}, or V has continuous second partial derivatives) on an open set W in a vector space E with an inner product.
i) $\overline{\mathrm{x}}$ is an equilibrium point of the differential equation $\mathrm{x}^{\prime}=-\operatorname{grad} \mathrm{V}(\mathrm{x})$ iff $\operatorname{DV}(\overline{\mathrm{x}})=0$
ii) If $x(t)$ is a solution of $x^{\prime}=-\operatorname{grad} V(x)$, then $\frac{d}{d t} V(x(t))=-|\operatorname{grad} V(x(t))|^{2}$
iii) If $x(t)$ is not constant, then $V(x(t))$ is a decreasing function of t.
3. a) Prove that
i) If x and z are on the same trajectory, then $\mathrm{L}_{\mathrm{w}}(\mathrm{x})=\mathrm{Lw}(\mathrm{z})$, similarly for α - limits.
ii) If D is a closed positively invariant set \& $Z \in D$, then $L_{w}(z) \subset D$, similarly for negatively invariant sets \& α - limits.
b) Prove that let S be a local section at $0 \&$ suppose $\phi_{\mathrm{to}}\left(\mathrm{z}_{0}\right)=0$. There is an open set $\mathrm{U} \subset \mathrm{W}$ containing z_{0} and a unique C^{1} map $\tau: \mathrm{U} \rightarrow \mathrm{R}$ such that $\tau\left(\mathrm{z}_{0}\right)=$ to and $\phi_{\tau(\mathrm{x})}(\mathrm{x}) \in \mathrm{S}$ for all $\mathrm{x} \in \mathrm{U}$

OR

c) Prove that a non empty compact limit set of a C^{1} planar dynamical system, which contains no equilibrium point, is a closed orbit.
d) Prove that every trajectory of the Volterra - Lotka equations
$x^{\prime}=\left(A-B_{y}\right) x, y^{\prime}=(c x-D) y, A, B, C, D>0$ is a closed orbit (except the equilibrium Z and the coordinate axes).
UNIT - IV
4. a) Let γ be an asymptotically stable closed orbit of period λ. Then prove that γ has a neighborhood $U \subset W$ such that every point of U has asymptotic period λ.
b) Let $g: S_{0} \rightarrow S$ be a Poincare map for γ, Let $x \in S_{0}$ be such that $\lim _{n \rightarrow \infty} g^{n}(x)=0$. Then prove that $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{d}\left(\varphi_{\mathrm{t}}(\mathrm{x}), \gamma\right)=0$

OR

c) Let $\mathrm{A}: \mathrm{J} \rightarrow \mathrm{L}(\mathrm{E})$ be a continuous map from an open interval J to the space of linear operators on E. Let $\left(t_{0}, u_{0}\right) \in \mathbf{J} \times E$. Then prove that the initial value problem $x^{\prime}=A(t) x, x\left(t_{0}\right)=u_{0}$ has a unique solution on all of J.
d) Let $\mathrm{O} \in \mathrm{E}$ be a sink for a C^{1} vector field $\mathrm{f}: \mathrm{W} \rightarrow \mathrm{E}$ where W is an open set containing O . There exists an inner product on E, a number $r>0$, and a neighborhood $\eta \subset v(w)$ of f such that the following holds: for each $g \in \eta$ there is a sink $a=a(g)$ for g such that the set $B_{r}=\{x \in E| | x \mid \leq r\}$ contains a, is in the basin of a, and is positively invariant under the flow of g.
5. a) Explain dynamical system with example.
b) Define
i) Stable equilibrium
ii) Asymptotically stable.
c) Explain growth rate of the population at time t.
d) Define structural stability.

