M.Sc.-II (Mathematics) (New CBCS Pattern) Semester - IV PSCMTH16 - Dynamical Systems

P. Pages : 2 Time : Three Hours			
	Note	es : 1. Solve all five questions. 2. All questions carry equal marks.	
		UNIT – I	
1.	a)	Let the function $f: W \rightarrow E$ be C^1 . Then prove that f is locally Lipschitz.	10
	b)	Let a C ¹ map f: W \rightarrow E be given. Suppose two solutions u(t), v(t) of x ¹ = f(x) are defined on the same open interval J containing to and satisfy u(t ₀) = v(t ₀) then prove that u(t) = v(t) for all t \in I.	10
		that $u(t) = v(t)$ for all $t \in J$. OR	
	c)	Let $W \subset E$ be open, Let $f: W \to E$ be a C^1 map. Let $y(t)$ be a solution on a maximal open interval $J = (\alpha, \beta) \subset R$ with $\beta < \infty$. Then prove that given any compact set $K \subset W$, there is some $t \in (\alpha, \beta)$ with $y(t) \notin K$.	10
	d)	Prove that Ω is an open set in $\mathbb{R} \times \mathbb{W}$ and $\phi : \Omega \to \mathbb{W}$ is a continuous map.	10
		UNIT – II	
2.	a)	Discuss the motion of pendulum moving in a vertical plane as an example of non-linear sink.	10
	b)	Let \overline{x} be an isolated minimum of V. Then prove that \overline{x} is an asymptotically stable equilibrium of the gradient system $x' = -\text{grad } V(x)$	10
		OR	
	c)	There exists $\delta > 0$ such that if U is the closed ball $B_{\delta}(0) \subset W$, then prove that for all $z = (x, y) \in C \cap U$,	10
		a) $\langle \mathbf{x}, \mathbf{f}_1(\mathbf{x}, \mathbf{y}) \rangle - \langle \mathbf{y}, \mathbf{f}_2(\mathbf{x}, \mathbf{y}) \rangle > 0$ if $\mathbf{x} \neq 0$ and	
		b) There exists $\alpha > 0$ with $\langle f(z), z \rangle \ge \alpha z ^2$	
	d)	 Prove that Let V: W→R be a C² function (that is, DV: W→E* is C¹, or V has continuous second partial derivatives) on an open set W in a vector space E with an inner product. i) x̄ is an equilibrium point of the differential equation x'=-grad V(x) iff DV(x̄)=0 	10

ii) If x(t) is a solution of x' = -grad V(x), then $\frac{d}{dt}V(x(t)) = -|\text{grad } V(x(t))|^2$

iii) If x(t) is not constant, then V(x(t)) is a decreasing function of t.

- **3.** a) Prove that
 - i) If x and z are on the same trajectory, then $L_w(x) = Lw(z)$, similarly for α limits.
 - ii) If D is a closed positively invariant set & $Z \in D$, then $L_w(z) \subset D$, similarly for negatively invariant sets & α limits.
 - b) Prove that let S be a local section at 0 & suppose $\phi_{to}(z_0) = 0$. There is an open set 10 $U \subset W$ containing z_0 and a unique C^1 map $\tau: U \to R$ such that $\tau(z_0) = t_0$ and $\phi_{\tau(x)}(x) \in S$ for all $x \in U$

OR

- c) Prove that a non empty compact limit set of a C^1 planar dynamical system, which contains no equilibrium point, is a closed orbit. 10
- d) Prove that every trajectory of the Volterra Lotka equations 10 $x' = (A - B_y)x, y' = (cx - D)y, A, B, C, D > 0$ is a closed orbit (except the equilibrium Z and the coordinate axes).

UNIT - IV

- 4. a) Let γ be an asymptotically stable closed orbit of period λ . Then prove that γ has a 10 neighborhood U \subset W such that every point of U has asymptotic period λ .
 - b) Let $g: S_0 \to S$ be a Poincare map for γ , Let $x \in S_0$ be such that $\lim_{n \to \infty} g^n(x) = 0$. Then prove that $\lim_{n \to \infty} d(\phi_t(x), \gamma) = 0$

OR

- c) Let $A: J \to L(E)$ be a continuous map from an open interval J to the space of linear 10 operators on E. Let $(t_0, u_0) \in J \times E$. Then prove that the initial value problem $x' = A(t)x, x(t_0) = u_0$ has a unique solution on all of J.
- d) Let $O \in E$ be a sink for a C^1 vector field $f: W \to E$ where W is an open set containing O. There exists an inner product on E, a number r > 0, and a neighborhood $\eta \subset v(w)$ of f such that the following holds: for each $g \in \eta$ there is a sink a = a(g) for g such that the set $B_r = \{x \in E \mid |x| \le r\}$ contains a, is in the basin of a, and is positively invariant under the flow of g.
- Explain dynamical system with example. 5. 5 a) Define 5 b) Stable equilibrium ii) Asymptotically stable. i) Explain growth rate of the population at time t. 5 c) Define structural stability. 5 d)

10