M.Sc.- II (Mathematics) New CBCS Pattern Semester-IV PSCMTH16 : Dynamical Systems

P. Pages: 2	* 7 3 5 3 *	GUG/W/23/13767
Time : Three Hours		Max. Marks : 100

Notes : 1. Solve all **five** questions.

2. All questions carry equal marks.

UNIT – I

1. a) Let $u:[0, \alpha] \to R$ be continuous & non negative. Suppose $C \ge 0$, $K \ge 0$ are such that $u(t) \le C + \int_{0}^{1} Ku(s) dS$ for all $t \in [0, \alpha]$ then prove that $u(t) \le Ce^{kt}$ for all $t \in [0, \alpha]$.

b) If $f: W \to E$ is locally Lipschitz & $A \subset W$ is a compact (Closed & bounded) set, then **10** prove that $f \mid A$ is Lipschitz.

OR

- c) Prove that ϕ has the following property : $\phi_{s+t}(x) = \phi_s(\phi_t(x))$ in the sense that if one side **10** of above equation is defined, so is the other, and they are equal.
- d) Find a Lipschitz constant on the region indicated $f(x) = x^{1/3}$, $-1 \le x \le 1$. 10

UNIT – II

- 2. a) Let \overline{x} be an isolated minimum of V. Then prove that \overline{x} is an asymptotically stable 10 equilibrium of the gradient system x' = -grad V(x).
 - b) Find equilibrium points of gradient system f(z) = -grad V(z) where 10 $V(x, y) = x^2(x-1)^2 + y^2$ and $V: \mathbb{R}^2 \to \mathbb{R}$ be a function.

OR

- c) Prove that E* is isomorphic to E and thus has the same dimension. 10
- d) Let E be a real vector space with an inner product & let T be a self-adjoint operator on E.
 10 Then prove that the eigenvalues of T are real.

UNIT – III

3. a) Let $y \in L_w(x) \bigcup L_\alpha(x)$. Then prove that the trajectory of y crosses any local section at 10 not more than one point.

- b) Prove that
 - i) If x and z are on the same trajectory, then $L_w(x) = L_w(z)$ similarly for α -limits.
 - ii) If D is a closed positively invariant set and $Z \in D$, then $L_w(Z) \subset D$, similarly for negatively invariant sets & α -limits.

OR

- c) Let r be a closed orbit enclosing an open set U contained in the domain W of the dynamical system. Then prove that U contains an equilibrium.
- d) Prove that let S be a local section at O and suppose $\phi_{t_0}(z_0) = 0$. There is an open set 10 $U \subset W$ containing τ_0 & a unique C¹ map $\tau: U \rightarrow R$ such that $\tau(z_0) = t_0$ and $\phi_{\tau(x)}(x) \in S$ for all $x \in U$.

UNIT – IV

- 4. a) Let $g: S_0 \to S$ be a Poincare map for γ . Let $x \in S_0$ be such that $\lim_{n \to \infty} g^n(x) = 0$. Then prove that $\lim_{t \to \infty} d(\phi_t(x), \gamma) = 0$.
 - b) Prove that let \bar{x} be a fixed point of a discrete dynamical system $g: W \to E$. If the eigen 10 values of $Dg(\bar{x})$ are less than 1 in absolute value, \bar{x} is asymptotically stable.

OR

- c) Assume E is normed. Let $\gamma > \| D + (x_0)^{-1} \|$ let $V \subset W$ be an open ball around x_0 such that $\| D + (y)^{-1} \| < \gamma$ and $\| D + (y) D + (z) \| < \frac{1}{\gamma}$ for all $y, z \in V$. Then prove that f | V is one-to-one.
- d) Let $W \subset R X E$ be open & $f,g: W \to E$ continuous. Suppose that for all $(t, x) \in W$, 10 $|f(t,x)-g(t,x)| < \epsilon$. Let K be a Lipschitz constant in x for f(t, x) If x(t), y(t) are solutions to x' = f(t, x), y' = g(t, y) respectively, on some interval J, and $x(t_0) = y(t_0)$ then prove that $|x(t) - y(t)| \le \frac{\epsilon}{K} (\exp(K|t - t_0|) - 1)$.
- **5.** a) Define the flow of differential equation.
 - b) Show that at an equilibrium of a gradient system, the eigenvalues are real.
 - c) Define monotone sequences in planar dynamical systems.
 - d) Explain structural stability.

10

5

5

5

5