M.Sc. - II (Mathematics) New CBCS Pattern Semester-III

PSCMTH14D - Commutative Algebra (Optional)
P. Pages : 2

GUG/W/23/13761
Time : Three Hours

Max. Marks : 100

Notes: 1. Solve all five questions.
2. Each question carry equal marks.

UNIT - I

1. a) Prove that every non-zero ring A has at least one maximal ideal.
b) Prove that the set \mathfrak{R} of all nilpotent elements in a ring A is an ideal, and A / \Re has no nilpotent element $\neq 0$.

OR

c) Let A be a nonzero ring. Then prove that the following are equivalent:
i) A is a field:
ii) The only ideals in A are 0 and (1):
iii) Every homomorphism of A into a non-zero ring B is injective.
d) i) Let $p_{1}, p_{2} \ldots, p_{n}$ be prime ideals and let a be an ideal contained in $\bigcup_{i=1}^{n} p_{i}$. Then prove that $\mathrm{a} \subseteq \mathrm{p}_{\mathrm{i}}$ for some i .
ii) Let $a_{1}, a_{2}, \ldots, a_{n}$ be ideals and p be a prime ideal containing $\bigcap_{i=1}^{n} a_{i}$. Then prove that $p \supseteq a_{i}$ for some i. If $p=\bigcap_{i=1}^{n} a_{i}$, then prove that $p=a_{i}$ for some i.

UNIT - II
2. a) Let $\mathrm{M}, \mathrm{N}, \mathrm{P}$ be A - modules. Then prove that there exists unique isomorphism
$(\mathrm{M} \oplus \mathrm{N}) \otimes \mathrm{P} \rightarrow(\mathrm{M} \otimes \mathrm{P}) \oplus(\mathrm{N} \otimes \mathrm{P})$
b) Let $\mathrm{M}^{\prime} \xrightarrow{\mathrm{u}} \mathrm{M} \xrightarrow{v} \mathrm{M}^{\prime \prime} \rightarrow 0$ be a sequence of A-modules and homomorphisms. Then prove that this sequence is exact if and only if for all A -modules N , then sequence. $0 \rightarrow \operatorname{Hom}\left(M^{\prime \prime}, N\right) \xrightarrow{\bar{v}} \operatorname{Hom}(M, N) \xrightarrow{\bar{u}} \operatorname{Hom}\left(M^{\prime}, N\right)$ is exact.
ii) Let $0 \rightarrow \mathrm{~N}^{\prime} \xrightarrow{\mathbf{u}} \mathrm{N} \xrightarrow{\nu} \mathrm{N}^{\prime \prime}$ be a sequence of A-modules and homomorphisms. Then prove that this sequence is exact if and only if for all A-modules M , the sequence. $0 \rightarrow \operatorname{Hom}\left(\mathrm{M}, \mathrm{N}^{\prime}\right) \xrightarrow{\overline{\mathrm{u}}} \operatorname{Hom}(\mathrm{M}, \mathrm{N}) \xrightarrow{\overline{\mathrm{v}}} \operatorname{Hom}\left(\mathrm{M}, \mathrm{N}^{\prime \prime}\right)$ is exact.

OR

c) i) If $L \supseteq M \supseteq N$ are A-modules. Then prove that $(L / N) /(M / N) \cong L / M$
ii) If M_{1}, M_{2} are submodules of M, then prove that $\left(M_{1}+M_{2}\right) / M_{1} \cong M_{2} /\left(M_{1} \cap M_{2}\right)$.
d) Let M, N be A-modules. Then prove that there exists a pair (T, g) consisting of an Amodule T and an A-bilinear mapping $\mathrm{g}: \mathrm{M} \times \mathrm{N} \rightarrow \mathrm{T}$, with the following property: Given any A-module P and any A-bilinear mapping $f: M \times N \rightarrow P$, there exists a unique A linear mapping $\mathrm{f}^{\prime}: T \rightarrow P$ such that $\mathrm{f}=\mathrm{f}^{\prime} \cdot \mathrm{g}$.
Moreover, if (T, g) and $\left(\mathrm{T}^{\prime}, \mathrm{g}^{\prime}\right)$ are two pairs with this property, then there exists a unique isomorphism $\mathrm{j}: \mathrm{T} \rightarrow \mathrm{T}^{\prime}$ such that $\mathrm{j} \cdot \mathrm{g}=\mathrm{g}^{\prime}$.

UNIT - III

3. a) For any A-module M, prove that the following statements are equivalent:
i) $\quad \mathrm{M}$ is a flat A -module;
ii) $\quad M_{p}$ is a flat A_{p} - module for each prime ideal p;
iii) $\quad M_{m}$ is a flat A_{m}-module for each maximal ideal m.
b) Let M be a finitely generated A -module, S a multiplicatively closed subset of A . Then
prove that $S^{-1}(\operatorname{Ann}(M))=\operatorname{Ann}\left(S^{-1} M\right)$.

OR

c) Let $\mathrm{A} \subseteq \mathrm{B}$ be integral domains, A integrally closed, B integral over A . Let $\mathrm{p}_{1} \supseteq \cdots \supseteq \mathrm{p}_{\mathrm{n}}$ be a chain of prime ideals of A, and let $q_{1} \supseteq \cdots \supseteq q_{m}(m<n)$ be a chain of prime ideals of B such that $q_{i} \cap A=p_{i}(1 \leq i \leq m)$ then prove that the chain $q_{1} \supseteq \cdots \supseteq q_{m}$ can be extended to a chain $\mathrm{q}_{1} \supseteq \cdots \supseteq \mathrm{q}_{\mathrm{n}}$ such that $\mathrm{q}_{\mathrm{i}} \cap \mathrm{A}=\mathrm{p}_{\mathrm{i}}(1 \leq \mathrm{i} \leq \mathrm{n})$.
d) Suppose that M has a composition series of length n, Then prove that every composition series of M has length n, and every chain in M can be extended to a composition series.

UNIT - IV

4. a) Prove that in Noetherian ring A very irreducible ideal is primary.
b) Prove that in an Artin ring the nilradical η is nilpotent.

OR

c) Let A be a local domain. Then prove that A is a discrete valuation ring if and only if every non-zero fractional ideal of A is invertible.
d) Prove that the ring of integers in an algebraic number field K is a Dedekind domain.
5. a) Define: ideal quotient and radical of an ideal.
b) Define: Direct Sum and Direct Product of Modules.
c) Explain Field of Fractions of Ring A with respect to multiplicatively closed subset S of a ring.
d) Define Fractional ideal and Artin Ring.

