M.Sc. - II (Mathematics) CBCS Pattern Semester-III PSCMTH14B - General Relativity-I (Optional)

P. F Tin	Pages : ne : Th	2 ree Hours $\star 6 3 0 3 \star$	GUG/W/23/13759 Max. Marks : 100
	Note	es : 1. Solve all five questions. 2. All questions carry equal marks.	
		UNIT – I	
1.	a)	Prove that the divergence of Einstein tensor vanishes i.e. $G_{n;m}^{m} = 0$.	10
	b)	State and prove the Bianchi identity.	10
		OR	
	c)	Prove that $\frac{\delta T^r}{\delta u}$ is contravariant vector.	10
	d)	Derive the equation of geodesic deviation.	10
		UNIT – II	
2.	a)	Obtain the energy momentum tensor for electromagnetic field.	10
	b)	Show that the Poisson's equation can be recovered to field equation of ge	meral relativity. 10
		OR	
	c)	Obtain the relation between g_{44} and v.	10
	d)	Obtain the Einstein's field equations from action principle.	10
		UNIT – III	
3.	a)	Derive the mathematical formulation of bending of light rays.	10
	b)	Compute all the non-vanishing Christoffel Symbols of the metric $ds^{2} = -e^{A}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) + e^{B}dt^{2}$	10
		OR	
	c)	Obtain the equation for planetary motion.	10
	d)	Obtain the Schwarzschild solution in isotropic coordinates.	10

UNII - IV	UNIT	_	IV
-----------	------	---	----

4.	a)	Derive the linearized field equation.	10
	b)	Derive the line element for the interior Schwarzschild solution.	10
		OR	
	c)	Derive Weyl solution.	10
	d)	Derive the spherically symmetric solutions of the linearized field equations.	10
5.	a)	Prove that $g_{mn,r} = [mr, n] + [nr, m]$	5
	b)	Explain the principle of covariance.	5
	c)	Write short note on advance of perihelion of mercury.	5
	d)	Discuss: i) Associated Weyl Solution. ii) Lorenz-gauge.	5
