P. Pages : 2

Time : Three Hours

Notes: 1. Solve all five questions.
2. Each question carries equal marks.
UNIT - I

1. a) Obtain the equation of continuity in cartesian form.
b) For an incompressible fluid $\overline{\mathrm{q}}=[-\mathrm{wy}, \mathrm{wx}, 0]$ where $\mathrm{w}=$ constant. Discuss the nature of the flow.

OR

c) Obtain Euler's equation of motion.
d) Apply Bernoulli's equation in working of pitot tube.

UNIT - II

2. a) State and prove Milne - Thomson circle theorem.
b) Discuss the flow due to uniform line doublet at 0 of strength μ per unit length, its axis being along $\overline{\mathrm{ox}}$

OR

c) Find the equation of the stream line due to uniform line source of the strength m through the point $\mathrm{A}(-\mathrm{C}, 0), \mathrm{B}(\mathrm{C}, 0)$ and a uniform line sink of strength 2 m through the origin.
d) Discus the velocity components at of a uniform flow past a fixed infinite circular cylinder.

UNIT - III

3. a) Obtain one dimensional wave equation.
b) Obtain Maxwell's thermodynamics relation.

OR

c) Find the profile $\phi(\mathrm{x}, \mathrm{t})$ of an one dimensional wave propagation if $\mathrm{t}=0, \phi=\mathrm{f}(\mathrm{x})$, $\frac{\partial \phi}{\partial \mathrm{t}}=\mathrm{G}(\mathrm{x})$
d) Discuss about progressive and stationary wave.

UNIT - IV

4. a) Derive the equation of motion of a gas. 10
b) Define speed of sound in gas and derive the equation of sound in gas. 10
OR
c) Describe the investigation of maximum mass flows through a Nozzle. 10
d) Discuss reservoir discharge through a channel of varying, section. 10
5. a) Define the stream line and path line. 5
b) Discuss the flow for which $w=z^{2}$. 5
c) Define isothermal adiabatic and isentropic process. 5
d) Explain the shock wave. 5
