M.Sc.(Mathematics) New CBCS Pattern Semester-III
 PSCMTH13 - Paper-III : Mathematical Methods

P. Pages: 3

Time : Three Hours

Notes: 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) Find the function whose cosine transform is

$$
\sqrt{\frac{2}{\pi}} \frac{\sin \mathrm{a} \xi}{\xi}
$$

b) Find Fourier sine transform of $f(x)=\frac{1}{x\left(x^{2}+a^{2}\right)}$.

OR

c) Evaluate Fourier transform of $H(x+a)-H(x-a)$.
d) Find Fourier sine \& Fourier Cosine Transform of the function

$$
\mathrm{f}(\mathrm{x})= \begin{cases}\sin \mathrm{x}, & 0<\mathrm{x}<\mathrm{a} \\ 0, & \mathrm{x}>\mathrm{a}\end{cases}
$$

UNIT - II
2. a) Let $f(x)$ be continuous and $f^{\prime}(x)$ be sectionally continuous on the interval $0 \leq x \leq a$, then prove that
i) $\quad \overline{\mathrm{f}}_{\mathrm{c}}\left[\mathrm{f}^{\prime}(\mathrm{x}) ; \mathrm{x} \rightarrow \mathrm{n}\right]=(-1)^{\mathrm{n}} \mathrm{f}(\mathrm{a})-\mathrm{f}(0)+\frac{\mathrm{n} \pi}{\mathrm{a}} \overline{\mathrm{f}}_{\mathrm{s}}(\mathrm{n}), \mathrm{n} \in \mathrm{Z}^{*}$
ii) $\quad \overline{\mathrm{f}}_{\mathrm{s}}\left[\mathrm{f}^{\prime}(\mathrm{x}) ; \mathrm{x} \rightarrow \mathrm{n}\right]=\frac{-\mathrm{n} \pi}{\mathrm{a}} \overline{\mathrm{f}}_{\mathrm{c}}(\mathrm{n}), \mathrm{n} \in \mathrm{N}$
b) Solve the wave equation
$\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}=\frac{1}{\mathrm{c}^{2}} \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{t}^{2}}, 0 \leq \mathrm{x} \leq \mathrm{a}, \mathrm{t}>0$
Satisfying the boundary conditions $u(0, t)=u(a, t)=0, t>0$ and the initial conditions $\mathrm{u}(\mathrm{x}, 0)=\frac{4 \mathrm{~b}}{\mathrm{a}^{2}} \mathrm{x}(\mathrm{a}-\mathrm{x}), \frac{\partial \mathrm{u}(\mathrm{x}, 0)}{\partial \mathrm{t}}=0,0 \leq \mathrm{x} \leq \mathrm{a}$ to determine the displacement $\mathrm{u}(\mathrm{x}, \mathrm{t})$.
c) The end points of a solid bounded by $\mathrm{x}=0$ and $\mathrm{x}=\pi$ are maintained at temperatures $\mathrm{u}(0, \mathrm{t})=1, \mathrm{u}(\pi, \mathrm{t})=3$, where $\mathrm{u}(\mathrm{x}, \mathrm{t})$ represents its temperature at any point of it at any time t. Initially, the solid was held at 1 unit temperature with its surfaces were insulated. Find the temperature distribution $u(x, t)$ of the solid, given that $u_{x x}(x, t)=u_{t}(x, t)$.
d) Solve the three dimensional Laplace Equation $\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0$.
$0 \leq \mathrm{x} \leq \pi, 0 \leq \mathrm{y} \leq \pi, 0 \leq \mathrm{z} \leq \pi$ with the boundary conditions
$\mathrm{V}=\mathrm{V}_{0}$, when $\mathrm{y}=\pi ; \mathrm{V}=0$, when $\mathrm{y}=0$ and
$\mathrm{V}=0$, when $\mathrm{x}=0, \pi$ and $\mathrm{V}=0$, when $\mathrm{z}=0, \pi$

UNIT - III

3. a) i) If Laplace transform of $f(t)$ is $\bar{f}(p)$, then prove that Laplace transform of $f(t-a) H(t-a)$ is $e^{-a p} \bar{f}(p)$.
ii) If $\mathrm{L}[\mathrm{f}(\mathrm{t}) ; \mathrm{t} \rightarrow \mathrm{p}]=\overline{\mathrm{f}}(\mathrm{p})$, then prove that $\mathrm{L}[\mathrm{f}(\mathrm{at}) ; \mathrm{t} \rightarrow \mathrm{p}]=\frac{1}{\mathrm{a}} \overline{\mathrm{f}}\left(\frac{\mathrm{p}}{\mathrm{a}}\right)$.
b) Define Laplace transform of the error function and Laplace transform of the error complementary function and evaluate Laplace transform of $E_{r} f(\sqrt{t})$ and $L\left[E_{r} f_{c}(\sqrt{t})\right]$.

OR

c) Evaluate $L^{-1}\left[\frac{1}{p(p+1)^{3}}\right]$
d) Evaluate $L^{-1}\left[\frac{\mathrm{p}}{\left(\mathrm{p}^{2}+\mathrm{u}\right)^{3}}\right]$ by using convolution theorem.

UNIT - IV

4. a) If $f(x)=\left\{\begin{array}{ll}x^{n}, & 0<x<a \\ 0, & x>a\end{array}\right.$ Find Hankel transform of order x of $f(x)$.
b) Solve the differential equation,
$\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{r}^{2}}+\frac{1}{\mathrm{r}} \frac{\partial \mathrm{u}}{\partial \mathrm{r}}+\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{z}^{2}}=0, \mathrm{r} \geq 0, \mathrm{z} \geq 0$
Satisfying the conditions (i) $\mathrm{u} \rightarrow \infty$ as $\mathrm{z} \rightarrow \infty$ and as $\mathrm{r} \rightarrow \infty$.
(ii) $u=f(r)$, on $z=0 r \geq 0$.

OR

c) If $f^{*}(s)$ and $g^{*}(s)$ be Mellin Transforms of $f(x)$ and $g(x)$ respectively then prove that $\mathrm{M}[\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x}) ; \mathrm{x} \rightarrow \mathrm{s}]=\frac{1}{2 \pi \mathrm{i}} \int_{\mathrm{c}-\mathrm{i} \infty}^{\mathrm{c}+\mathrm{i} \infty} \mathrm{f}^{*}(\mathrm{z}) \cdot \mathrm{g}^{*}(\mathrm{~s}-\mathrm{z}) \mathrm{dz}$.
d) Find Mellin inversion of $\sqrt{(\mathrm{s})}$.
5. a) If $F[f(x) ; x \rightarrow \xi]=F(\xi)$, then prove that $F[f(a x) ; x \rightarrow \xi]=\frac{1}{a} F\left(\frac{\xi}{a}\right)$.
b) Let $f(x) \& f^{\prime}(x)$ be continuous \& $f^{\prime \prime}(x)$ be sectionally continuous in $0 \leq x \leq$ a then prove that $\bar{f}_{c}\left[f^{\prime \prime}(x) ; n\right]=-f^{\prime}(0)+(-1)^{n} f^{\prime}(a)-\frac{n^{2} \pi^{2}}{a^{2}} \bar{f}_{c}(n)$.
c) Evaluate $L\left[\frac{1}{\sqrt{\pi \mathrm{t}}}\right]$
d) Evaluate $\mathrm{H}_{1}\left[\frac{\mathrm{e}^{-\mathrm{ax}}}{\mathrm{x}} ; \xi\right]$

