M.Sc.(Mathematics) New CBCS Pattern Semester-III PSCMTH13 - Paper-III : Mathematical Methods

P. Pa Time	ages : e : Th	$\frac{1}{3}$ The Hours $\frac{1}{3} \frac{1}{4} \frac{1}{3} $	GUG/W/23/13757 Max. Marks : 100
	Note	es : 1. Solve all five questions. 2. All questions carry equal marks.	
		UNIT – I	
1.	a)	Find the function whose cosine transform is $\sqrt{\frac{2}{\pi}} \frac{\sin a\xi}{\xi}$	10
	b)	Find Fourier sine transform of $f(x) = \frac{1}{x(x^2 + a^2)}$.	10
		OR	
	c)	Evaluate Fourier transform of $H(x+a) - H(x-a)$.	10
	d)	Find Fourier sine & Fourier Cosine Transform of the function $f(x) = \begin{cases} \sin x, & 0 < x < a \\ 0, & x > a \end{cases}$	10

$\mathbf{UNIT} - \mathbf{II}$

- 2. a) Let f(x) be continuous and f'(x) be sectionally continuous on the interval $0 \le x \le a$, 10 then prove that
 - i) $\bar{f}_{c}[f'(x); x \to n] = (-1)^{n} f(a) f(0) + \frac{n\pi}{a} \bar{f}_{s}(n), n \in \mathbb{Z}^{*}$

ii)
$$\overline{f}_{s}[f'(x); x \rightarrow n] = \frac{-n\pi}{a}\overline{f}_{c}(n), n \in \mathbb{N}$$

b) Solve the wave equation

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \; \frac{\partial^2 u}{\partial t^2}, \; 0 \le x \le a, t > 0$$

Satisfying the boundary conditions u(0,t) = u(a,t) = 0, t > 0 and the initial conditions

$$u(x,0) = \frac{4b}{a^2}x(a-x), \quad \frac{\partial u(x,0)}{\partial t} = 0, \quad 0 \le x \le a \text{ to determine the displacement } u(x,t).$$

OR

10

- c) The end points of a solid bounded by x = 0 and x = π are maintained at temperatures 10 u(0,t) = 1, u(π,t) = 3, where u(x,t) represents its temperature at any point of it at any time t. Initially, the solid was held at 1 unit temperature with its surfaces were insulated. Find the temperature distribution u(x,t) of the solid, given that u_{xx}(x,t) = u_t(x,t).
- d) Solve the three dimensional Laplace Equation $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0.$ 10 $0 \le x \le \pi, \ 0 \le y \le \pi, \ 0 \le z \le \pi \text{ with the boundary conditions}$ $V = V_0, \text{ when } y = \pi; V = 0, \text{ when } y = 0 \text{ and}$ $V = 0, \text{ when } x = 0, \pi \text{ and } V = 0, \text{ when } z = 0, \pi$

UNIT – III

10

10

3. a) i) If Laplace transform of f(t) is $\overline{f}(p)$, then prove that Laplace transform of f(t-a)H(t-a) is $e^{-ap}\overline{f}(p)$.

ii) If
$$L[f(t); t \to p] = \overline{f}(p)$$
, then prove that $L[f(at); t \to p] = \frac{1}{a} \overline{f}(\frac{p}{a})$.

b) Define Laplace transform of the error function and Laplace transform of the error 10 complementary function and evaluate Laplace transform of $E_r f(\sqrt{t})$ and $L\left[E_r f_c(\sqrt{t})\right]$.

OR

c) Evaluate
$$L^{-1}\left[\frac{1}{p(p+1)^3}\right]$$
 10
d) Evaluate $L^{-1}\left[\frac{p}{(p^2+u)^3}\right]$ by using convolution theorem. 10

UNIT - IV

4. a)
If
$$f(x) = \begin{cases} x^n, & 0 < x < a \\ 0, & x > a \end{cases}$$
 Find Hankel transform of order x of $f(x)$.
10

b) Solve the differential equation,

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial z^2} = 0, r \ge 0, z \ge 0$$

Satisfying the conditions (i) $u \rightarrow \infty$ as $z \rightarrow \infty$ and as $r \rightarrow \infty$.

(ii) u = f(r), on z = 0 $r \ge 0$.

OR

GUG/W/23/13757

2

- If $f^*(s)$ and $g^*(s)$ be Mellin Transforms of f(x) and g(x) respectively then prove that 10 c) $M[f(x)g(x);x \rightarrow s] = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} f^*(z) \cdot g^*(s-z) dz.$
- Find Mellin inversion of $\overline{(s)}$. d)

5. a) If
$$F[f(x); x \to \xi] = F(\xi)$$
, then prove that $F[f(ax); x \to \xi] = \frac{1}{a} F\left(\frac{\xi}{a}\right)$. 5

- Let f(x) & f'(x) be continuous & f''(x) be sectionally continuous in $0 \le x \le a$ then b) 5 prove that $\overline{f}_{c}[f''(x);n] = -f'(0) + (-1)^{n}f'(a) - \frac{n^{2}\pi^{2}}{a^{2}}\overline{f}_{c}(n)$.
- Evaluate $L\left[\frac{1}{\sqrt{\pi t}}\right]$ c) 5

d) Evaluate
$$H_1\left[\frac{e^{-ax}}{x};\xi\right]$$
 5

10