M.Sc. - II (Mathematics) New CBCS Pattern Semester-III

PSCMTH12 - Functional Analysis Paper-II

P. Pages : 3

Time : Three Hours

Notes : 1. Solve all five questions.
2. Each question carries equal marks.

UNIT - I

1. a) Let P be a real number such that $1 \leq \mathrm{P}<\infty$. Then prove that the space $\ell_{\mathrm{p}}^{\mathrm{n}}$ of all n -tuples $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots . ., \mathrm{x}_{\mathrm{n}}\right)$ of scalars, with the norm defined by

$$
\|\mathrm{x}\|_{\mathrm{p}}=\left(\sum_{\mathrm{i}=1}^{\mathrm{n}}\left|\mathrm{x}_{\mathrm{i}}\right|^{\mathrm{p}}\right)^{1 / \mathrm{p}}
$$

is a Banach space.
b) Let N and N^{\prime} be normed linear spaces and T a linear transformation of N into N^{\prime}. Then prove that the following conditions on T are all equivalent to one another:
i) T is continuous
ii) T is continuous at the origin, in the sense that $\mathrm{x}_{\mathrm{n}} \rightarrow 0 \Rightarrow \mathrm{~T}\left(\mathrm{x}_{\mathrm{n}}\right) \rightarrow 0$
iii) There exists a real number $k \geq 0$ with the property that $\|T(x)\| \leq k\|x\|$ for every $x \in N$.

OR

c) Let M be a linear subspace of a normed linear space N , and let f be a functional defined on
M. If x_{0} is a vector not in M, and if

$$
\mathrm{M}_{0}=\mathrm{M}+\left[\mathrm{x}_{0}\right]
$$

is the linear subspace spanned by M and x_{0} then prove that f can be extended to a functional f_{0} defined on M_{0} such that $\left\|\mathrm{f}_{0}\right\|=\|\mathrm{f}\|$.
d) Prove that if N is a normed linear space and x_{0} is a non-zero vector in N , then there exists a functional f_{0} in N * such that $\mathrm{f}_{0}\left(\mathrm{x}_{0}\right)=\left\|\mathrm{x}_{0}\right\|$ and $\left\|\mathrm{f}_{0}\right\|=1$.

UNIT - II

2. a) State and prove the open mapping theorem.
b) Let B be a Banach space and N a normed linear space. If $\left\{T_{i}\right\}$ is a non - empty set of continuous linear transformations of B into N with the property that $\left\{\mathrm{T}_{\mathrm{i}}(\mathrm{x})\right\}$ is a bounded subset of N for each vector x in B , then prove that $\left\{\left\|\mathrm{T}_{\mathrm{i}}\right\|\right\}$ is a bounded set of numbers.

OR

c) Let M be a closed linear subspace of a Hilbert space H , let x be a vector not in M , and let d be the distance from x to M. Then prove that there exists a unique vector y_{0} in M such that $\left\|x-y_{0}\right\|=d$.
d) Prove that if M is a closed linear subspace of a Hilbert space H, then $H=M \oplus M^{\perp}$.

UNIT - III

3. a) Prove that the adjoint operation $T \rightarrow T^{*}$ on $\mathrm{B}(\mathrm{H})$ has the following properties
i) $\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right) *=\mathrm{T}_{1}^{*}+\mathrm{T}_{2}^{*}$
ii) $(\alpha \mathrm{T}) *=\bar{\alpha} \mathrm{T}^{*}$
iii) $\left(\mathrm{T}_{1} \mathrm{~T}_{2}\right) *=\mathrm{T}_{2}^{*} \mathrm{~T}_{1}^{*}$
iv) $\mathrm{T} * *=\mathrm{T}$
v) $\|\mathrm{T} *\|=\|\mathrm{T}\|$
vi) $\|\mathrm{T} * \mathrm{~T}\|=\|\mathrm{T}\|^{2}$
b) Prove that if A is a positive operator on H , then $\mathrm{I}+\mathrm{A}$ is non-singular. In particular, show that $\mathrm{I}+\mathrm{T}^{*} \mathrm{~T}$ and $\mathrm{I}+\mathrm{TT}^{*}$ are non-singular for an arbitrary operator T on H .

OR

c) Prove that if T is an operator on H , then T is normal \Leftrightarrow its real and imaginary parts commute.
d) Prove that if $P_{1}, P_{2}, \ldots . P_{n}$ are the projections on closed linear subspace $M_{1}, M_{2}, \ldots M_{n}$ of H,
then $P=P_{1}+P_{2}+\ldots \ldots+P_{n}$ is a projection \Leftrightarrow the P_{i} 's are pairwise orthogonal (in the sense that $P_{i} P_{j}=0$ whenever $i \neq j$); and in this case, P is the projection on

$$
\mathrm{M}=\mathrm{M}_{1}+\mathrm{M}_{2}+\ldots . . \mathrm{M}_{\mathrm{n}}
$$

UNIT - IV

4. a) Let B be a basis for H, and T an operator whose matrix relative to B is $\left[\alpha_{i j}\right]$. Then prove that T is non-singular $\Leftrightarrow\left[\alpha_{i j}\right]$ is non-singular, and in this case $\left[\alpha_{i j}\right]^{-1}=\left[T^{-1}\right]$.
b) Prove that if $B=\left\{e_{i}\right\}$ is a basis for H, then the mapping $T \rightarrow[T]$, which assigns to each operator T its matrix relative to B, is an isomorphism of the algebra $B(H)$ onto the total matrix algebra A_{n}.

OR

c) Show that an operator T on H is normal \Leftrightarrow its adjoint T^{*} is a polynomial in T .
d) Prove that if T is normal, then the eigen spaces M_{i} 's corresponding to the eigen values λ_{i} 's of T span H.
5. a) Show that the linear space $\not \subset$ of the complex numbers with the norm of a number x defined by $\|\mathrm{x}\|=|\mathrm{x}|$ is a normed linear space.
b) Prove that every non-zero Hilbert space contains a complete orthonormal set.
c) If N is a normal operator on H then prove that $\left\|N^{2}\right\|=\|N\|^{2}$.
d) Prove that if T is normal, then the, M_{i} 's (eigen spaces of T corresponding to eigen values λ_{i} of T) are pairwise orthogonal.

