GUG/W/23/13756

Time : Three Hours

P. Pages: 3

Notes : 1. Solve all **five** questions.

2. Each question carries equal marks.

UNIT – I

1. a) Let P be a real number such that $1 \le P < \infty$. Then prove that the space ℓ_p^n of all n-tuples 10

 $x = (x_1, x_2, ..., x_n)$ of scalars, with the norm defined by

$$\left\| x \right\|_p = \left(\sum_{i=1}^n |x_i|^p \right)^{1/p}$$

is a Banach space.

- b) Let N and N' be normed linear spaces and T a linear transformation of N into N'. Then **10** prove that the following conditions on T are all equivalent to one another:
 - i) T is continuous
 - ii) T is continuous at the origin, in the sense that $x_n \rightarrow 0 \Rightarrow T(x_n) \rightarrow 0$
 - iii) There exists a real number $k \ge 0$ with the property that $||T(x)|| \le k ||x||$ for every $x \in N$.

OR

c) Let M be a linear subspace of a normed linear space N, and let f be a functional defined on 10 M. If x_0 is a vector not in M, and if

 $\mathbf{M}_0 = \mathbf{M} + [\mathbf{x}_0]$

is the linear subspace spanned by M and x_0 then prove that f can be extended to a functional f_0 defined on M_0 such that $||f_0|| = ||f||$.

d) Prove that if N is a normed linear space and x_0 is a non-zero vector in N, then there exists 10 a functional f_0 in N*such that $f_0(x_0) = ||x_0||$ and $||f_0|| = 1$.

UNIT – II

- 2. a) State and prove the open mapping theorem.
 - b) Let B be a Banach space and N a normed linear space. If $\{T_i\}$ is a non empty set of 10 continuous linear transformations of B into N with the property that $\{T_i(x)\}$ is a bounded subset of N for each vector x in B, then prove that $\{\|T_i\|\}$ is a bounded set of numbers.

OR

P.T.O

GUG/W/23/13756 Max. Marks : 100

10

- c) Let M be a closed linear subspace of a Hilbert space H, let x be a vector not in M, and let 10 d be the distance from x to M. Then prove that there exists a unique vector y_0 in M such that $||x y_0|| = d$.
- d) Prove that if M is a closed linear subspace of a Hilbert space H, then $H = M \oplus M^{\perp}$. **10**

UNIT – III

10

- 3. a) Prove that the adjoint operation $T \rightarrow T^*$ on B(H) has the following properties
 - i) $(T_1 + T_2)^* = T_1^* + T_2^*$
 - ii) $(\alpha T)^* = \overline{\alpha} T^*$
 - iii) $(T_1T_2)^* = T_2^* T_1^*$
 - iv) $T^{**} = T$
 - v) $||T^*|| = ||T||$
 - vi) $||T*T|| = ||T||^2$
 - b) Prove that if A is a positive operator on H, then I + A is non-singular. In particular, show 10 that $I + T^*T$ and $I + TT^*$ are non-singular for an arbitrary operator T on H.

OR

c) Prove that if T is an operator on H, then T is normal ⇔ its real and imaginary parts 10 commute.

d) Prove that if $P_1, P_2, ..., P_n$ are the projections on closed linear subspace $M_1, M_2, ..., M_n$ of H, **10** then $P = P_1 + P_2 + ..., + P_n$ is a projection \Leftrightarrow the P_i 's are pairwise orthogonal (in the sense that $P_iP_j = 0$ whenever $i \neq j$); and in this case, P is the projection on

 $M = M_1 + M_2 + \dots M_n$.

UNIT – IV

- **4.** a) Let B be a basis for H, and T an operator whose matrix relative to B is $\begin{bmatrix} \alpha_{ij} \end{bmatrix}$. Then prove **10** that T is non-singular $\Leftrightarrow \begin{bmatrix} \alpha_{ij} \end{bmatrix}$ is non-singular, and in this case $\begin{bmatrix} \alpha_{ij} \end{bmatrix}^{-1} = \begin{bmatrix} T^{-1} \end{bmatrix}$.
 - b) Prove that if $B = \{e_i\}$ is a basis for H, then the mapping $T \rightarrow [T]$, which assigns to each operator T its matrix relative to B, is an isomorphism of the algebra B(H) onto the total matrix algebra A_n .

OR

- c) Show that an operator T on H is normal \Leftrightarrow its adjoint T* is a polynomial in T. 10
- d) Prove that if T is normal, then the eigen spaces M_i 's corresponding to the eigen values 10 λ_i 's of T span H.

5.	a)	Show that the linear space $\not\subset$ of the complex numbers with the norm of a number x defined by $ x = x $ is a normed linear space.	5
	b)	Prove that every non-zero Hilbert space contains a complete orthonormal set.	5
	c)	If N is a normal operator on H then prove that $\ N^2\ = \ N\ ^2$.	5
	d)	Prove that if T is normal, then the, M_i 's (eigen spaces of T corresponding to eigen values λ_i of T) are pairwise orthogonal.	5
