P. Pages: 2 Time : Three Hours

> Solve all five questions. Notes : 1.

> > 2. All questions carry equal marks.

UNIT - I

- 10 1. a) Prove that when a limit of a function f(z) exists at a point z_0 , it is is unique.
 - Suppose that $f(z) = u(x, y) + i \forall (x, y)$ and that f'(z) exists at point $z_0 = x_0 + iy_0$. Prove 10 b) that the first-order partial derivatives of u and v must exist at (x_0, y_0) , and must satisfy Cauchy-Riemann equations $u_x = v_y$, $u_y = -v_x$. OR
 - Suppose that a function f is analytic in some domain D which contains a segment of the x 10 c) axis and whose lower half is the reflection of the upper half with respect to that axis. Then prove that $\overline{f(z)} = f(\overline{z})$ for each point z in the domain if and only if f(x) is real for each point x on the segment.
 - d) 10 If a function f(z) = u(x, y) + iv(x, y) is analytic in a domain D, then prove that its component functions u and v are harmonic in D.

UNIT – II

2. a) Let C denote a contour of length L, and suppose that a function f(z) is piecewise continuous 10 on C. Prove that if M is a nonnegative constant such that $|f(z)| \le m$ for all points z on C at

which f (z) is defined, then $\left| \int_{C} f(z) dz \right| \le mL$.

- Let f be analytic everywhere inside and on a simple closed contour C, taken in the positive b) 10 sense. If z_0 is any point interior to C, then prove that $f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)dz}{z-z_0}$
 - OR
- 10 c) Prove that if a power series $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ converges when $z = z_1 (z_1 \neq z_0)$, then it is absolutely convergent at each point z in the open disk. $|z-z_0| < R_1$ where $R_1 = |z_1-z_0|$.
- d) Prove that if a function f is entire and bounded in the complex plane, then f(z) is constant 10 throughout the plane.

1

Max. Marks: 100

UNIT – III

3. a) Let C be a simple closed contour, described in the positive sense. If a function f is analytic 10 inside and on C except for a finite number of singular points z_k (k = 1, 2,...,n) inside C,

then.
$$\int_{C} f(z) dz = 2\pi i \sum_{k=1}^{n} \sum_{z=z_{k}}^{\operatorname{ReS}} f(z).$$

b) Suppose that a function f is bounded and analytic in some deleted neighbourhood 10 $0 < |z-z_0| < \epsilon$. Prove that if f is not analytic at z_0 , then it has a removable singularity there.

OR

c) Evaluate the improper integral.

$$\int_{0}^{\infty} \frac{x \sin 2x}{x^2 + 3} dx$$

d) Suppose that z₀ is an essential singularity of a function f, and let w₀ be any complex 10 number. Then prove that, for any positive number ∈, the inequality |f(z)-w₀|<∈ is satisfied at some point z in each deleted neighbourhood 0<|z-z₀|<δ of z₀.

UNIT - IV

- 4. a) Find a linear fractional transformation that maps the points $z_1 = 2$, $z_2 = i$ and $z_3 = -2$ on to 10 the points $w_1 = 1$, $w_2 = i$ and $w_3 = -1$.
 - b) Show that the transformation $w = \sin z$ is a one to one mapping of the sem-infinite strip. 10 $-\pi/2 \le x \le \pi/2$, $y \ge 0$ in the z plane onto the upper half $v \ge 0$ of the w plane.

OR

- c) Show that the mapping w = 1/z transforms circles and lines into circles and lines. 10
- d) Show that the image of the vertical strip $0 \le x \le 1$, $y \ge 0$ under the mapping $w = z^2$ is a losed semiparabolic region.
- 5. a) If a function f(z) is continuous and nonzero at a point z_0 , then prove that $f(z) \neq 0$ 5 throughout some neighbourhood of that point.
 - b) Prove that a function f that is analytic throughout a simply connected domain D must have 5 an antiderivative everywhere in D.
 - c) Suppose that
 - i) Two functions p and q are analytic at a point z_0 .
 - ii) $p(z_0) \neq 0$ and q has a zero of order m at z_0 . Then prove that the quotient p(z)/q(z) has a pole of order m at z_0 .
 - d) Give a geometric description of the transformation w = A(Z+B), where A and B are complex constants and $A \neq 0$.

5

10