M.Sc.-I (Mathematics) (New CBCS Pattern) Semester - II PSCMTHT10A - Optional Paper : Differential Geometry

P. P Tim	ages : ne : Thr	2 ree Hours \star 2 4 8 6 \star	GUG/S/23/1 3 Max. Marks :	3750 100
	Note	es : 1. Solve all five questions. 2. All questions carry equal marks.		
		UNIT – I		
1.	a)	If W is the angle between the parametric curves at the point of intersection $tanW = \frac{H}{F}$	then obtain	10
	b)	$(\ell, m) \& (\ell', m')$ are the direction coefficients of two directions at a point P on the rface & θ is the angle between the two directions at P, then prove that $\cos \theta = E \ \ell \ell' + F(\ell m' + \ell' m) + Gmm'$		
		1) $\sin \theta = H(\ell m - \ell m)$		
	c)	Show that the parameters an a surface can always be chosen so that the cur family & the orthogonal trajectories become parametric curves.	rves of the given	10
	d)	Show that the curves bisecting the angle between the parametric curves are $Edu^2 - Gdv^2 = 0$.	e given by	10
		UNIT – II		
2.	a)	Prove that the curves of the family $\frac{v^3}{u^2} = \text{constant}$ are geodesics on a surface metric	ce with the	10
		v au - 2uvauav + 2u av , u > 0, v > 0		
	b)	Prove that every helix on a cylinder is a geodesic and conversely.		10
		OR		
	c)	If U & V are the intrinsic quantities of a surface at a point (u,v) then prove $k_g = \frac{1}{N} \frac{v(s)}{u'}.$	that	10
	d)	Find the Gaussian curvature at a point (u,v) of the anchor ring. r = $((b + a \cos u) \cos v, (b + a \cos u) \sin v, a \sin u),$		10
		$0 < u, v < 2\pi$		

UNIT – III

3. a) Find L, M, N for the sphere $r = (a \cos u \cos v, a \cos u \sin v, a \sin u)$ where u is the latitude & 10 v is the longitude.

Find the principal directions & principal curvatures at a print on the surface b) X = a(u+v), y = b(u-v), z = uv

OR

- Show that all points on a surface are umbilics. c)
- If K is the normal curvature in a direction making an angle Ψ with the principal direction 10 d) V = constant then prove that $k = k_a \cos^2 \Psi + k_b \sin^2 \Psi$. Where $k_a \& k_b$ are principal curvatures at the point P on the surface.

UNIT - IV

4. a) If
$$N_1 = \frac{\partial N}{\partial u} \& N_2 = \frac{\partial N}{\partial v}$$
 then prove that
i) $N_1 = \frac{1}{H^2} [(FM - GL)r_1 + (FL - EM)r_2]$
ii) $N_2 = \frac{1}{H^2} [(FN - GM)r_1 + (FM - EN)r_2]$

If N is the surface normal then prove that $N_1 \times N_2 = \frac{LN - M^2}{H}N$.

OR

c) If
$$K_a & K_b$$
 are the principal curvatures, then prove that
 $(k_a)_2 = \frac{1}{2} \frac{E_2}{E} (k_b - k_a)$ and
 $(k_b)_1 = \frac{1}{2} \frac{G_1}{G} (k_a - k_b)$

d) If
$$\overline{k}$$
 and $\overline{\mu}$ are the Gaussian curvature & mean curvature of \overline{S} then prove that

$$\overline{k} = \frac{ke}{(1+2\mu a + ka^2)}, \quad \overline{\mu} = \frac{(\mu + ak)e}{1+2\mu a + ka^2} \text{ Where } e = \pm 1$$
a) Obtain $ds^2 = Edu^2 + 2Edudu + Cdu^2$
5

Obtain $ds^2 = Edu^2 + 2Fdudv + Gdv^2$ 5. a)

> Show that the geodesics on a right circular cylinder are helices. b)

- Define 5 c)
 - i) Mean curvature µ
 - Gaussian curvature K. ii)
- d) From the Weingarten equations, obtain $H[N, N_1, r_1] = EM - FL$.

b)

10

10

5

5