M.Sc.-I (Mathematics) (New CBCS Pattern) Semester - II

PSCMTHT10A - Optional Paper : Differential Geometry
P. Pages: 2

GUG/S/23/13750
Time : Three Hours

Max. Marks : 100

Notes: 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) If W is the angle between the parametric curves at the point of intersection then obtain $\tan \mathrm{W}=\frac{\mathrm{H}}{\mathrm{F}}$
b) If $(\ell, \mathrm{m}) \&\left(\ell^{\prime}, \mathrm{m}^{\prime}\right)$ are the direction coefficients of two directions at a point P on the surface \& θ is the angle between the two directions at P , then prove that
i) $\cos \theta=\mathrm{E} \ell \ell^{\prime}+\mathrm{F}\left(\ell^{\prime}+\ell^{\prime} \mathrm{m}\right)+\mathrm{Gmm}^{\prime}$
ii) $\sin \theta=H\left(\ell m^{\prime}-\ell{ }^{\prime} m\right)$

OR

c) Show that the parameters an a surface can always be chosen so that the curves of the given family \& the orthogonal trajectories become parametric curves.
d) Show that the curves bisecting the angle between the parametric curves are given by $\mathrm{Edu}^{2}-\mathrm{Gdv}^{2}=0$.

UNIT - II

2. a) Prove that the curves of the family $\frac{\mathrm{v}^{3}}{\mathrm{u}^{2}}=$ constant are geodesics on a surface with the metric

$$
\mathrm{v}^{2} \mathrm{du}^{2}-2 u v d u d v+2 \mathrm{u}^{2} \mathrm{dv}^{2}, u>0, \mathrm{v}>0
$$

b) Prove that every helix on a cylinder is a geodesic and conversely.

OR

c) If $U \& V$ are the intrinsic quantities of a surface at a point (u, v) then prove that $\mathrm{k}_{\mathrm{g}}=\frac{1}{\mathrm{~N}} \frac{\mathrm{v}(\mathrm{s})}{\mathrm{u}^{\prime}}$.
d) Find the Gaussian curvature at a point (u, v) of the anchor ring.

$$
\begin{gathered}
\mathrm{r}=((\mathrm{b}+\mathrm{a} \cos \mathrm{u}) \cos \mathrm{v},(\mathrm{~b}+\mathrm{a} \cos \mathrm{u}) \sin \mathrm{v}, \mathrm{a} \sin \mathrm{u}), \\
0<\mathrm{u}, \mathrm{v}<2 \pi
\end{gathered}
$$

UNIT - III

3. a) Find L, M, N for the sphere $r=(a \cos u \cos v, a \cos u \sin v, a \sin u)$ where u is the latitude \& v is the longitude.
b) Find the principal directions \& principal curvatures at a print on the surface $X=a(u+v), y=b(u-v), z=u v$

OR

c) Show that all points on a surface are umbilics.
d) If K is the normal curvature in a direction making an angle Ψ with the principal direction $\mathrm{V}=$ constant then prove that $\mathrm{k}=\mathrm{k}_{\mathrm{a}} \cos ^{2} \Psi+\mathrm{k}_{\mathrm{b}} \sin ^{2} \Psi$. Where $\mathrm{k}_{\mathrm{a}} \& \mathrm{k}_{\mathrm{b}}$ are principal curvatures at the point P on the surface.

UNIT - IV

4. a) If $N_{1}=\frac{\partial \mathrm{N}}{\partial \mathrm{u}} \& \mathrm{~N}_{2}=\frac{\partial \mathrm{N}}{\partial \mathrm{v}}$ then prove that
i) $\mathrm{N}_{1}=\frac{1}{\mathrm{H}^{2}}\left[(\mathrm{FM}-\mathrm{GL}) \mathrm{r}_{1}+(\mathrm{FL}-\mathrm{EM}) \mathrm{r}_{2}\right]$
ii) $\quad \mathrm{N}_{2}=\frac{1}{\mathrm{H}^{2}}\left[(\mathrm{FN}-\mathrm{GM}) \mathrm{r}_{1}+(\mathrm{FM}-\mathrm{EN}) \mathrm{r}_{2}\right]$
b) If N is the surface normal then prove that $\mathrm{N}_{1} \times \mathrm{N}_{2}=\frac{\mathrm{LN}-\mathrm{M}^{2}}{H} \mathrm{~N}$.

OR

c) If $\mathrm{K}_{\mathrm{a}} \& \mathrm{~K}_{\mathrm{b}}$ are the principal curvatures, then prove that

$$
\begin{aligned}
& \left(\mathrm{k}_{\mathrm{a}}\right)_{2}=\frac{1}{2} \frac{\mathrm{E}_{2}}{\mathrm{E}}\left(\mathrm{k}_{\mathrm{b}}-\mathrm{k}_{\mathrm{a}}\right) \text { and } \\
& \left(\mathrm{k}_{\mathrm{b}}\right)_{1}=\frac{1}{2} \frac{\mathrm{G}_{1}}{\mathrm{G}}\left(\mathrm{k}_{\mathrm{a}}-\mathrm{k}_{\mathrm{b}}\right)
\end{aligned}
$$

d) If $\overline{\mathrm{k}}$ and $\bar{\mu}$ are the Gaussian curvature \& mean curvature of $\overline{\mathrm{S}}$ then prove that

$$
\overline{\mathrm{k}}=\frac{\mathrm{ke}}{\left(1+2 \mu \mathrm{a}+\mathrm{ka}^{2}\right)}, \bar{\mu}=\frac{(\mu+\mathrm{ak}) \mathrm{e}}{1+2 \mu \mathrm{a}+\mathrm{ka}^{2}} \text { Where } \mathrm{e}= \pm 1
$$

5. a) Obtain $\mathrm{ds}^{2}=\mathrm{Edu}^{2}+2 \mathrm{Fdudv}+\mathrm{Gdv}^{2}$
b) Show that the geodesics on a right circular cylinder are helices.
c) Define
i) Mean curvature μ
ii) Gaussian curvature K.
d) From the Weingarten equations, obtain $\mathrm{H}\left[\mathrm{N}, \mathrm{N}_{1}, \mathrm{r}_{1}\right]=\mathrm{EM}-\mathrm{FL}$.
