# M.Sc.- I (Mathematics) New CBCS Pattern Semester-II <br> PSCMTH10A / PSCMTHT10A : Optional Paper : Differential Geometry 

P. Pages : 2

GUG/W/23/13750
Time : Three Hours
t $7336 \star$
Max. Marks : 100

Notes: 1. Solve all five questions.
2. All questions carry equal marks.

## UNIT - I

1. a) Prove that the first fundamental form of a surface is a positive definite quadratic form in du, dv.
b) If $\omega$ is the angle between the parametric curves at the point of intersection the prove that $\mathrm{T}_{\mathrm{an}} \mathrm{w}=\frac{\mathrm{H}}{\mathrm{F}}$

## OR

c) If ( $\ell^{\prime}, \mathrm{m}^{\prime}$ ) are the direction coefficient of a line which makes an angle $\frac{\pi}{2}$ with then line whose direction coefficients are $(\ell, \mathrm{m})$ then prove that

$$
\mathrm{t}^{\prime}=\frac{-1}{\mathrm{H}}(\mathrm{~F} \ell+\mathrm{Gm}), \mathrm{m}^{\prime}=\frac{1}{\mathrm{H}}(\mathrm{E} \ell+\mathrm{Fm})
$$

d) Find the orthogonal trajectories of the circle $r=a \cos \theta$.

## UNIT - II

2. a) If the arc length $s$ is the parameter of the curve, then prove that geodesic equations are
$\mathrm{U}=\frac{\mathrm{d}}{\mathrm{ds}}\left(\frac{\partial \mathrm{T}}{\partial \mathrm{u}^{\prime}}\right)-\frac{\partial \mathrm{T}}{\partial \mathrm{u}}=0$
$\mathrm{V}=\frac{\mathrm{d}}{\mathrm{ds}}\left(\frac{\partial \mathrm{T}}{\partial \mathrm{v}^{\prime}}\right)-\frac{\partial \mathrm{T}}{\partial \mathrm{v}}=0$
b) If the orthogonal trajectories of the curve $v=$ constant are geodesics, then prove that $\left(\frac{\mathrm{H}^{2}}{\mathrm{E}}\right)$ is independent of $u$.

## OR

c) Find the Gaussian curvature at any point of a sphere with representation
$r=a(\sin u \cos v, \sin u \sin v, \cos u)$
where $0<u<\pi$ and $0 \leq v<2 \pi$.
d) Prove that in the geodesic polar form, The Gaussian curvature $k=-\frac{9_{11}}{g}$ where $g=\sqrt{G}$ of the surface.
3. a) Obtain $\mathrm{k}_{\mathrm{n}}=\frac{\mathrm{Ldu}^{2}+2 \mathrm{Mdudv}+\mathrm{Ndv}^{2}}{E d u^{2}+2 \mathrm{fdudv}+\mathrm{Gdv}^{2}}$, if $\mathrm{k}_{\mathrm{n}}$ is the normal curvature of the curve at a
point on a surface and $\mathrm{L}=\mathrm{N} \cdot \mathrm{r}_{11}, \mathrm{M}=\mathrm{N} \cdot \mathrm{r}_{12}, \mathrm{~N}=\mathrm{N} \cdot \mathrm{r}_{22} \& E, \mathrm{~F}, \mathrm{G}$ are the first fundamental coefficients.
b) Find the normal curvature of the right helicoid $r(u, v)=(u \cos v, u \sin v, c v)$ at a point on it.

## OR

c) Show that the principal curvatures are given by the roots of the equation
$\mathrm{k}^{2}\left(\mathrm{EG}-\mathrm{F}^{2}\right)-\mathrm{k}(\mathrm{EN}+\mathrm{GL}-2 \mathrm{FM})+\mathrm{LN}-\mathrm{M}^{2}=0$
d) Show that a necessary \& sufficient condition that the lines of curvature be the parametric curves is that $\mathrm{F}=0, \mathrm{M}=0$.

## UNIT - IV

4. a) If $\mathrm{k}_{\mathrm{a}} \& \mathrm{k}_{\mathrm{b}}$ are the principal curvatures, then prove that the Codazzi equations are
$\left(\mathrm{k}_{\mathrm{a}}\right)_{2}=\frac{1}{2} \frac{\mathrm{E}_{2}}{\mathrm{E}}\left(\mathrm{k}_{\mathrm{b}}-\mathrm{k}_{\mathrm{a}}\right) \&$
$\left(\mathrm{k}_{\mathrm{b}}\right)_{1}=\frac{1}{2} \frac{\mathrm{G}_{1}}{\mathrm{G}}\left(\mathrm{k}_{\mathrm{a}}-\mathrm{k}_{\mathrm{b}}\right)$
b) State and prove Weingarten Equations.

## OR

c) Prove that the parallel surfaces of a minimal surface are surfaces for which
$\mathrm{R}_{\mathrm{a}}+\mathrm{R}_{\mathrm{b}}=$ constant, where
$\mathrm{R}_{\mathrm{a}}=\frac{1}{\mathrm{k}_{\mathrm{a}}} \& \mathrm{R}_{\mathrm{b}}=\frac{1}{\mathrm{k}_{\mathrm{b}}}$
d) Prove that from Weingarten equations
$\mathrm{H}\left[\mathrm{N}, \mathrm{N}_{1}, \mathrm{r}_{1}\right]=\mathrm{EM}-\mathrm{FL}$ and
$\mathrm{H}\left[\mathrm{N}, \mathrm{N}_{1}, \mathrm{r}_{2}\right]=\mathrm{FM}-\mathrm{GL}$
5. a) Prove that if ds represents the element of area PQRS on the surface, $\mathrm{ds}=\mathrm{H} d u \mathrm{dv}$.
b) If a geodesic on a surface of revolution cuts the meridian at a constant angle, then prove that the surface is a right cylinder.
c) Prove that the straight lines on a surface are asymptotic lines.
d) Show that when the lines of curvature are parametric curves, then the Weingarten equations are
$N_{1}=-\frac{L}{E} r_{1} \& N_{2}=-\frac{N}{G} r_{2}$.

