PSCMTH09 : Classical Mechanics

P. Pages : 2

Time : Three Hours

Notes : 1. Solve all the five questions.
2. Each question carry equal marks.

> UNIT - I

1. a) Explain the brachistochrone problem.
b) Find the shortest distance between two points in the plane.

OR

c) Derive the Lagrange's equations from Hamilton's principle.
d) Discuss the extension of Hamilton's principle to nonholonomic system.

UNIT - II

2. a) Derive Hamilton's equations form a variational principle.
b) Obtain the Hamilton's canonical equations.

OR

c) Explain the Routh's procedure.
d) State \& prove the principle of least action.

UNIT - III

3. a) Show directly that the transformation $\mathrm{Q}=\log \left(\frac{1}{\mathrm{q}} \sin \mathrm{p}\right), \mathrm{P}=\mathrm{q} \cot \mathrm{p}$ is canonical.
b) If $\mathrm{F}=\mathrm{F}_{1}(\mathrm{q}, \mathrm{Q}, \mathrm{t})$ and $\mathrm{F}=\mathrm{F}_{2}(\mathrm{q}, \mathrm{p}, \mathrm{t})$ are generating functions of canonical transformation the prove that,
i) $\mathrm{K}=\mathrm{H}+\frac{\partial \mathrm{F}_{1}}{\partial \mathrm{t}}$
ii) $\quad \mathrm{P}_{\mathrm{i}}=\frac{\partial \mathrm{F}_{1}}{\partial \mathrm{q}_{\mathrm{i}}}$
iii) $\mathrm{P}_{\mathrm{i}}=-\frac{\partial \mathrm{F}_{1}}{\partial \mathrm{Q}_{\mathrm{i}}}$

OR

c) Explain the symmetric approach to canonical transformations.
d) Obtain the equation $\mathrm{P}_{\mathrm{i}} \dot{\mathrm{q}}_{\mathrm{i}}-\mathrm{H}=\mathrm{P}_{\mathrm{i}} \dot{\mathrm{Q}}_{\mathrm{i}}-\mathrm{K}+\frac{\mathrm{dF}}{\mathrm{dt}}$.

UNIT - IV

4. a) Discuss the angular momentum poisons bracket relations.
b) Show that the constant of motion are generating functions of those infinitesimal canonical transformation which leave the Hamiltonian invariant.

OR

c) Discuss the symmetric group of mechanical system.
d) State and prove Liouville's theorem.
5. a) Show that generalized momentum conjugate to a cyclic Co-ordinate conserved.
b) Prove that, A cyclic Co-ordinate will be absent in Hamiltonian.
c) Prove that the Poisson bracket of two constants of motion is also constant of motion.
d) Obtain the equations $\dot{\mathrm{q}}_{\mathrm{i}}=\left[\mathrm{q}_{\mathrm{i}}, \mathrm{H}\right] \& \dot{\mathrm{p}}_{\mathrm{i}}=\left[\mathrm{p}_{\mathrm{i}}, \mathrm{H}\right]$.

