Max. Marks: 100

GUG/S/23/13749

Notes : 1. Solve all **five** questions. All questions carry equal marks. 2.

P. Pages: 2

c)

2.

Time : Three Hours

UNIT – I

1.	a)	Find the shortest distance between two points in a plane.	10
	b)	Derive the Lagrange's equations from Hamilton's principle.	10
		OR	

Prove that the generalized momentum conjugate to a cyclic coordinate is conserved.

Show that a hoop rolls down the incline with one half the acceleration it would have 10 d) slipping down a frictionless plane, and the friction force of constraint is $\lambda = \frac{Mg\sin\theta}{2}$

UNIT – II

a)	Obtain canonical equation of Hamilton.	10
b)		10

Verify that the matrix J has the properties $J^2 = -1 \& JJ = 1$ and that its determinant has the value + 1.

OR

c)	Explain Routh's Procedure.	10	
d)	State & Prove principle of Least action.	10	
UNIT – III			
a)	Show that the transformation	10	

3.	a)	Show that the transformation
		$Q = log\left(\frac{1}{q}sinp\right), p = q cot p is canonical.$

b) Explain the simplistic approach to canonical transformations. 10

OR

c)	Prove that the fundamental Poisson brackets are invariant under canonical transformation.	10
d)	Obtain the equation	10
	$p_i \dot{q}_i - H P_i \dot{Q}_i - k + \frac{dt}{dt}$	

1

2 4 8 5 *

10

4.	a)	State & prove Liouville's Theorem.	10
	b)	Show that the Poisson brackets are given by $[P_x, P_y] = 0, [P_x, L_z] = P_y, [P_y, L_z] = P_x$	10

OR

c)	Explain the angular momentum poison bracket formulation.	10
d)	Explain symmetry groups of mechanical systems.	10
a)	Obtain the equation of Catenary $x = a \cos h \frac{y-b}{a}$	5
b)	Prove that a cyclic coordinate will be absent in the Hamiltonian.	5
c)	Show that all point transformations are canonical.	5
d)	Obtain the equations $\dot{q}_i = [\dot{q}_i, H] \& \dot{p}_i = [p_i, H]$	5

5.