## M.Sc.-I (Mathematics) (New CBCS Pattern) Semester - II

PSCMTH09 - Classical Mechanics
P. Pages : 2

GUG/S/23/13749
Time : Three Hours

Notes: 1. Solve all five questions.
2. All questions carry equal marks.

## UNIT - I

1. a) Find the shortest distance between two points in a plane.
b) Derive the Lagrange's equations from Hamilton's principle.

## OR

c) Prove that the generalized momentum conjugate to a cyclic coordinate is conserved.
d) Show that a hoop rolls down the incline with one half the acceleration it would have
slipping down a frictionless plane, and the friction force of constraint is $\lambda=\frac{M g \sin \theta}{2}$

## UNIT - II

2. a) Obtain canonical equation of Hamilton.
b)

Verify that the matrix $\mathbf{J}$ has the properties $\mathbf{J}^{2}=-1 \& \tilde{J} \mathbf{J}=1$ and that its determinant has the value +1 .

## OR

c) Explain Routh's Procedure.
d) State \& Prove principle of Least action.

## UNIT - III

3. a) Show that the transformation
$\mathrm{Q}=\log \left(\frac{1}{\mathrm{q}} \sin \mathrm{p}\right), \mathrm{p}=\mathrm{q} \cot \mathrm{p}$ is canonical.
b) Explain the simplistic approach to canonical transformations.

## OR

c) Prove that the fundamental Poisson brackets are invariant under canonical transformation.
d) Obtain the equation
$\mathrm{p}_{\mathrm{i}} \dot{\mathrm{q}}_{\mathrm{i}}-\mathrm{HP}_{\mathrm{i}} \dot{\mathrm{Q}}_{\mathrm{i}}-\mathrm{k}+\frac{\mathrm{df}}{\mathrm{dt}}$

## UNIT - IV

4. a) State \& prove Liouville's Theorem. $\mathbf{1 0}$
b) Show that the Poisson brackets are given by

$$
\left[\mathrm{P}_{\mathrm{x}}, \mathrm{P}_{\mathrm{y}}\right]=0,\left[\mathrm{P}_{\mathrm{x}}, \mathrm{~L}_{\mathrm{z}}\right]=\mathrm{P}_{\mathrm{y}},\left[\mathrm{P}_{\mathrm{y}}, \mathrm{~L}_{\mathrm{z}}\right]=\mathrm{P}_{\mathrm{x}}
$$

OR
c) Explain the angular momentum poison bracket formulation. $\mathbf{1 0}$
d) Explain symmetry groups of mechanical systems.
5. a) Obtain the equation of Catenary
$x=a \cosh \frac{y-b}{a}$
b) Prove that a cyclic coordinate will be absent in the Hamiltonian.
c) Show that all point transformations are canonical.

Obtain the equations
$\dot{\mathrm{q}}_{\mathrm{i}}=\left[\dot{\mathrm{q}}_{\mathrm{i}}, \mathrm{H}\right] \& \dot{\mathrm{p}}_{\mathrm{i}}=\left[\mathrm{p}_{\mathrm{i}}, \mathrm{H}\right]$

