M.Sc. (Mathematics) (New CBCS Pattern) Semester - II **PSCMTH08 - Advanced Topics in Topology**

P. Pages : 2 Time : Three Hours			GUG/S/23/13748 Max. Marks : 100		
	Note	es: 1. Solve all the five questions. 2. Each question carries equal marks.			
		UNIT – I			
1.	a)	Prove that a normal space is completely regular iff it is regular.	10		
	b)	Prove that every countably compact metric space is totally bounded.	10		
OR					
	c)	Prove that a topological space X is completely normal iff every subspace of	f X is normal. 10		
	d)	Prove that every separable metric space is second axiom.	10		
UNIT – II					
2.	a)	Prove that $\pi_{\lambda}X_{\lambda}$ is locally connected iff each space X_{λ} is locally connect finite number are connected.	ted and all but a 10		
	b)	Prove that $X \times Y$ is connected iff X and Y are connected.	10		
		OR			
	c)	If X & Y are topological spaces, prove that the family of all sets of the form open in X & W open in Y is a base for a topology for $X \times Y$	n V×W with V 10		
	d)	Prove that $\pi_{\lambda}X_{\lambda}$ is Hausdorff iff each space X_{λ} is Hausdorff.	10		
UNIT – III					
3.	a)	If X is locally connected then prove that Y is locally connected with the que topology.	otient 10		
	b)	Prove that for every open covering of a metric space, there is a locally finite which refines it.	e open cover 10		
OR					
	c)	Prove that a subset G of Y is open in the quotient topology relative to $f: X \to Y$ iff $f^{-1}(G)$ is an open subset of X.	10		
	d)	Prove that every paracompact regular space is normal.	10		

$\mathbf{UNIT} - \mathbf{IV}$

4.	a)	If (D,\geq) is a directed set and E is an eventual subset of D, then prove that E, with the restriction of \geq is a directed set. Moreover, prove that a net $S: D \rightarrow X$ where X is a topological space, converges to x in X iff the restriction $S E: E \rightarrow X$ converges to x in X.	
	b)	Prove that a topological space is compact iff every ultrafilter in it is convergent.	10
		OR	
	c)	Prove that a topological space is Hausdorff iff limits of all nets in it are unique.	10
	d)	Let $\{X_i : i \in I\}$ be a collection of nonempty spaces & let X be its topological product. Then prove that X is compact iff each X_i is so for $i \in I$.	10
5.	a)	Prove that the family of all balls of points in a set X with metric d forms a base for a topology for X.	5
	b)	Prove that the projections $\pi_X \& \pi_Y$ are continuous and open mappings.	5
	c)	Define:	5
		i) Quotient topology	
		ii) σ - locally finite family	
	d)	Define:	5
		i) Directed set	

ii Net
