M.Sc.(Mathematics) New CBCS Pattern Semester-II **PSCMTH08 : Advanced Topics in Topology**

P. Pages : 2 Time : Three Hours			GUG/W/23/13748 Max. Marks : 100	
	Note	es : 1. Solve all the five questions. 2. Each question carries equal marks.		
		UNIT – I		
1.	a)	Prove that every metric space is completely normal.		10
	b)	Prove that every Lindel of metric space is second axiom.		10
		OR		
	c)	Prove that a normal space is completely regular iff it is regular.		10
	d)	Prove that every metric space is a Hausdorff space.		10
	UNIT – II			
2.	a)	Prove that the projections $\pi_x \& \pi_y$ are continuous and open mappings but closed, & so the product topology is the smallest topology for which the product nuous.		10
	b)	Prove that XXY is dense-in-itself iff at least one of the spaces X & Y is de	nse-in-itself.	10
	OR			
	c)	Prove that $\pi_{\lambda}X_{\lambda}$ is connected iff each space X_{λ} is connected.		10
	d)	Prove that $\pi_{\lambda} X_{\lambda}$ is compact iff each space X_{λ} is compact.		10
UNIT – III				
3.	a)	If F is a continuous, open mapping of the topological space X onto the top Y, then prove that the topology for Y must be the quotient topology.	ological space	10
	b)	Prove that every paracompact regular space is normal.		10
		OR		
	c)	If X is a regular paracompact space & Y is a regular 6-compact space, $X \times Y$ is paracompact.	then prove that	10
	d)	Prove that for every open covering of a metric space, there is a locally finit which refines it.	te open cover	10

$\mathbf{UNIT} - \mathbf{IV}$

- 4. a) Let $S: D \to X$ be a net in a topological space and Let $x \in X$. Then prove that x is a cluster 10 point of S iff there exists a subnet of 5 which converges to x in X.
 - b) Let $\tau_1 \& \tau_2$ be topologies on a set X such that a net in X converges to a point w.r.t. τ_1 iff it **10** does 50 w.r.t. τ_2 . Then prove that $\tau_1 = \tau_2$.

OR

c)	Prove that every filter is contained in an ultrafilter.				
d)	Prove that an ultrafilter converges to a point iff that point is a cluster point of it.				
a)	Prove that every metric space is a first axiom space.				
b)	If XxY is compact, then prove that X & Y are compact.				
c)	Define				
	i) Discrete family				
	ii) 6-discrete family.				
d)	Define				
	i) Eventual subset				
	ii) Cofinal subset				

5.