M.Sc.(Mathematics) New CBCS Pattern Semester-II PSCMTH07 : Lebesgue Measure Theory

Time : Three Hours			* 7 3 3 3 *	Max. Marks : 100	
	Note	s: 1. 2.	Solve all questions. Each question carry equal marks.		-
			UNIT – I		
1.	a)	Show th	at the outer measure of an interval is its length.	1	10
	b)	If E ₁ &I	E_2 are measurable then show that $E_1 \bigcup E_2$ is also measurable.	1	10
			OR		
	c)	Show th	at the interval (a,∞) is measurable.	1	10
	d)	Let $\langle E_n \rangle$ $E_{n+1} \subset \mathbb{I}$	\rangle be an infinite decreasing sequence of measurable sets i.e. a sequer E_n for each n & mE ₁ be finite then show that	nce with 1	10
		$m\left(\bigcap_{i=1}^{\infty}E\right)$	$i = \lim_{n \to \infty} m E_n.$		

UNIT – II

- 2. a) Let $\phi \& \psi$ be simple functions which Vanish outside a set of finite measure then show that 10 $\int (a\phi + b\psi) = a \int \phi + b \int \psi$. Also, if $\phi \ge \psi$ a.e. then show that $\int \phi \ge \int \psi$.
 - b) State & prove the bounded convergence theorem.

OR

- c) State & prove the Fatou's lemma.
- d) Let f be a non negative function which is integrable over a set E then show that for $\epsilon > 0$ 10 there is a $\delta > 0$ such that for every set $A \subset E$ with $mA < \delta$ we have $\int f < \epsilon$

UNIT – III

А

- 3. a) If f is of bounded variation on [a, b] then show that $T_a^b = P_a^b + N_a^b \& f(b) - f(a) = P_a^b - N_a^b$ 10
 - b) State & prove the Vitali lemma.

OR

1

P. Pages: 2

10

10

10

GUG/W/23/13747

GUG/W/23/13747

	OR	
c)	Let g be an integrable function on [0, 1] & suppose that there is a constant M such that $\left \int fg\right \le M \ f\ _p$	10
	For all bounded measurable functions f then show that g is in $L^p \& \ g\ _q \le M$.	
d)	State & prove Riesz representation theorem.	10
a)	If $m * E = 0$ then prove that E is measurable.	5
b)	Define the Riemann integral & Lebesgue integral.	5
c)	Define the convex functions.	5
d)	State the Minkowski inequality & its versions.	5

2

b) Show that the LP spaces are complete

4.

5.

a)

c) If f is absolutely continuous on [a, b] & f'(x) = 0 a.e. then show that f is constant.

d) If f is bounded & measurable on [a, b] & $F(x) = \int_{a}^{x} f(t)dt + F(a)$ then show that

F'(x) = f(x) for almost all x in [a, b].

State & prove the holder inequality.

UNIT – IV

10

10

10

10