M.Sc.-I (Mathematics) (New CBCS Pattern) Semester - II

PSCMTH07 - Lebesgue Measure Theory
P. Pages : 2

GUG/S/23/13747
Time : Three Hours
$\star 24883 \star$

Notes: 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) Prove that the outer measure of an interval is its length.
b) Let $\left\langle\mathrm{E}_{\mathrm{i}}\right\rangle$ be a sequence of measurable sets. Then show that $\mathrm{m}\left(\mathrm{UE}_{\mathrm{i}}\right) \leq \sum_{\mathrm{m}} \mathrm{E}_{\mathrm{i}}$. If the sets
E_{n} are pairwise disjoint, then prove that $\mathrm{m}\left(\mathrm{UE}_{\mathrm{i}}\right)=\sum \mathrm{mE}_{\mathrm{i}}$.

OR

c) Let $\left\langle\mathrm{E}_{\mathrm{n}}\right\rangle$ be an infinite decreasing sequence of measurable sets. Let ${ }_{m} \mathrm{E}_{1}$ be finite then prove that $m\left(\bigcap_{i=1}^{\infty} E_{i}\right)=\lim _{n \rightarrow \infty} m E_{n}$.
d) Let C be a constant and f and two measurable real-valued functions, defined on the same domain. Then prove that the functions $\mathrm{f}+\mathrm{c}, \mathrm{cf}, \mathrm{f}+\mathrm{g}$ and fg are also measurable.

UNIT - II

2. a) Prove that: If ϕ and Ψ are simple functions which vanish outside a set of finite measure.

Then $\int(\mathrm{a} \phi+\mathrm{b} \Psi)=\mathrm{a} \int \phi+\mathrm{b} \int \Psi$ and if $\phi \geq \Psi$ a.e., then $\int \phi \geq \int \Psi$
b) State and prove Bounded convergence theorem.

OR

c) Let f be a non negative function which is integrable over a set E. Then prove that for given $\in>0$ there is a $\delta>0$ such that for every set A C E with $\mathrm{mA}<\delta$ and $\int_{\mathrm{A}} \mathrm{f}<\epsilon$.
d) State and prove Lebesgue convergence theorem.

UNIT - III

3. a) Let E be a set of finite outer measure and I a collection of intervals that cover E in the sense of Vitali. Then prove that for given $\in>0$, there is a finite disjoint collection $\left\{\mathrm{I}_{1},---, \mathrm{I}_{\mathrm{N}}\right\}$ of intervals in I such that
$m *\left[E \sim \bigcup_{n=1}^{\infty} I_{n}\right]<\epsilon$.
b) Prove that: If f is integrable on $[\mathrm{a}, \mathrm{b}]$, then the function F defined by

$$
\mathrm{F}(\mathrm{x})=\int_{\mathrm{a}}^{\mathrm{x}} \mathrm{f}(\mathrm{t}) \mathrm{dt} \text { is a continuous function of bounded variation on }[\mathrm{a}, \mathrm{~b}] .
$$

OR

c) If F is bounded and measurable on $[a, b]$ and

$$
F(x)=\int_{a}^{x} f(t) d t+F(a)
$$

Then prove that $F^{\prime}(x)=f(x)$ for almost all x in $[a, b]$
d) Prove that a function F is an indefinite integral if and only if it is absolutely continuous.

UNIT - IV

4. a) State and prove Minkowski inequality.
b) Prove that a normed linear space X is complete if and only if every absolutely summable series is summable.

OR

c) Prove that L^{∞} is complete.
d) State and prove Riesz representation theorem.
5. a) Prove that if $m * A=0$, then $m *(A \cup B)=m * B$.
b) Show that if

$$
f(x)=\left\{\begin{array}{lll}
0 & x & \text { irrational } \\
1 & x & \text { rational }
\end{array}\right.
$$

then
$R \int_{a}^{-b} f(x)=b-a$ and $R \int_{-a}^{b} f(x) d x=0$.
c) Let ϕ be a convex function on $(-\infty, \infty)$ and F an integrable function on [0,1], then prove that $\int \phi(f(t)) d t \geq \phi\left[\int f(t) d t\right]$.
d) Show that $\|\mathrm{f}+\delta\|_{\infty} \leq\|\mathrm{f}\|_{\infty}+\|\delta\|_{\infty}$.

