M.Sc.(Mathematics) (New CBCS Pattern) Semester - II **PSCMTH06 - Field Theory**

P. Pa Time	iges : e : Thr	2 we Hours $* 2 4 8 2 *$	GUG/S/23/1374 Max. Marks : 10	16 00
	Note	 Solve all the five questions. Each question carries equal marks. 		_
		UNIT - I		
1.	a)	Let R be UFD, and $a, b \in R$. Then prove that there exists a greatest comb that is uniquely determined to within an arbitrary unit factor.	mon divisor of a &	10
	b)	Prove that every Euclidean domain is a P. I. D. (Principal Ideal Domain).	10
		OR		
	c)	Let R be a unique factorization domain. Then prove that the polynomial is also a unique factorization domain.	ring R[x] over R	10
	d)	If $f(x)$, $g(x) \in R[x]$, then prove that $C(fg) = C(f) C(g)$ where R is a UFE).	10
		UNIT – II		
2.	a)	Let $f(x) = a_0 + a_1x + \dots + a_{n-1}x^{n-1} + x^n \in \mathbb{Z}[x]$ be a monic polynoroot $a \in \mathbb{Q}$, then prove that $a \in \mathbb{Z} \& a \mid a_0$.	omial. If f(x) has a	10
	b)	Let $F \subseteq E \subseteq K$ be fields. If $[K:E] < \infty$ and $[E:F] < \infty$, then prove that i) $[K:F] < \infty$. ii) $[K:F] = [K:E][E:F]$.	t .	10
		OR		
	c)	State & prove Eisenstein criterion.	-	10
	d)	Let E be an algebraic extension of F, and let $6: E \rightarrow E$ be an embeddim over F. Then prove that 6 is onto and, hence, an automorphism of E.	ng of E into itself	10
		UNIT – III		
3.	a)	Let P be prime. Then prove that $f(x) = x^p - 1 \in Q[x]$ has splitting field $\alpha \neq 1 \& \alpha^P = 1$ Also, $[Q(\alpha):Q] = P - 1$.	$Q(\alpha)$, where	10
	b)	Let E be a finite extension of a field F. Then prove that the following ar a) $E = F(\alpha)$ for some $\alpha \in E$.	e equivalent.	10

b) There are only a finite number of intermediate fields between F & E.

OR

		multiplicity.	
	d)	If the multiplicative group F* of nonzero elements of a field F is cyclic, then prove that F is finite.	10
		UNIT – IV	
4.	a)	 Let E be a finite separable extension of a field F then prove that the following are equivalent: i) E is a normal extension of F. ii) F is the fixed field of G(E F). iii) [E:F] = G(E F) 	10
	b)	Prove that the Galois group of $x^4 - 2 \in Q[x]$ is the octic group (= group of symmetries of a square).	10
		OR	
	c)	Prove that every polynomial $f(x) \in \varphi(x)$ factors into linear factors in $\varphi(x)$.	10
	d)	Prove that the Galois group of $x^4 + 1 \in Q[x]$ is the Klein four-group.	10
5.	a)	Show that 3 is irreducible but not prime in the ring $\mathbb{Z}\left[\sqrt{-5}\right]$.	5
	b)	Find the minimal polynomials over Q of the following numbers. i) $\sqrt{2}+5$ ii) $3\sqrt{2}+5$	5
	c)	Let $F = \mathbb{Z}/(2)$. Prove that the splitting field of $x^3 + x^2 + 1 \in F[x]$ is a finite field with eight elements.	5

If $f(x) \in F[x]$ is irreducible over F, then prove that all roots of f(x) have the same

10

d) Let F be a field of characteristic $\neq 2$. Let $x^2 - a \in F[x]$ be an irreducible polynomial over 5 F. Then prove that its Galois group is of order 2. 5

c)