Notes : 1. Solve all the five questions.
2. Each question carries equal marks.

UNIT - I

1. a) Let R be UFD, and $a, b \in R$. Then prove that there exists a greatest common divisor of $a \&$ b that is uniquely determined to within an arbitrary unit factor.
b) Prove that every Euclidean domain is a P. I. D. (Principal Ideal Domain).

OR

c) Let R be a unique factorization domain. Then prove that the polynomial ring $\mathrm{R}[\mathrm{x}]$ over R is also a unique factorization domain.
d) If $f(x), g(x) \in R[x]$, then prove that $C(f g)=C(f) C(g)$ where R is a UFD.

UNIT - II

2. a) Let $f(x)=a_{0}+a_{1} x+----+a_{n-1} x^{n-1}+x^{n} \in \mathbb{Z}[x]$ be a monic polynomial. If $f(x)$ has a root $a \in \mathbb{Q}$, then prove that $a \in \mathbb{Z} \& a \mid a_{0}$.
b) Let $\mathrm{F} \subseteq \mathrm{E} \subseteq \mathrm{K}$ be fields. If $[\mathrm{K}: \mathrm{E}]<\infty$ and $[\mathrm{E}: \mathrm{F}]<\infty$, then prove that
i) $[\mathrm{K}: \mathrm{F}]<\infty$.
ii) $\quad[\mathrm{K}: \mathrm{F}]=[\mathrm{K}: \mathrm{E}][\mathrm{E}: \mathrm{F}]$.

OR

c) State \& prove Eisenstein criterion.
d) Let E be an algebraic extension of F , and let $6: \mathrm{E} \rightarrow \mathrm{E}$ be an embedding of E into itself over F . Then prove that 6 is onto and, hence, an automorphism of E .

UNIT - III

3. a) Let P be prime. Then prove that $f(x)=x^{p}-1 \in Q[x]$ has splitting field $Q(\alpha)$, where $\alpha \neq 1 \& \alpha^{\mathrm{P}}=1$ Also, $[\mathrm{Q}(\alpha): \mathrm{Q}]=\mathrm{P}-1$.
b) Let E be a finite extension of a field F . Then prove that the following are equivalent.
a) $E=F(\alpha)$ for some $\alpha \in E$.
b) There are only a finite number of intermediate fields between F \& E.

OR

c) If $f(x) \in F[x]$ is irreducible over F, then prove that all roots of $f(x)$ have the same multiplicity.
d) If the multiplicative group F^{*} of nonzero elements of a field F is cyclic, then prove that F is finite.

UNIT - IV

4. a) Let E be a finite separable extension of a field F then prove that the following are equivalent:
i) E is a normal extension of F .
ii) F is the fixed field of $G(E \mid F)$.
iii) $[\mathrm{E}: \mathrm{F}]=|\mathrm{G}(\mathrm{E} \mid \mathrm{F})|$
b) Prove that the Galois group of $x^{4}-2 \in \mathrm{Q}[\mathrm{x}]$ is the octic group (= group of symmetries of a square).

OR

c) Prove that every polynomial $\mathrm{f}(\mathrm{x}) \in \Phi(\mathrm{x})$ factors into linear factors in $\Phi(\mathrm{x})$.
d) Prove that the Galois group of $x^{4}+1 \in Q[x]$ is the Klein four-group.
5. a) Show that 3 is irreducible but not prime in the ring $\mathbb{Z}[\sqrt{-5}]$.
b) Find the minimal polynomials over Q of the following numbers.
i) $\sqrt{2}+5$
ii) $3 \sqrt{2}+5$
c) Let $F=\mathbb{Z} /(2)$. Prove that the splitting field of $x^{3}+x^{2}+1 \in F[x]$ is a finite field with eight elements.
d) Let F be a field of characteristic $\neq 2$. Let $x^{2}-a \in F[x]$ be an irreducible polynomial over F. Then prove that its Galois group is of order 2.

