M.Sc.(Mathematics) New CBCS Pattern Semester-II **PSCMTH06 : Field Theory**

P. Pages : 2 Time : Three Hours			GUG/W/23/13746 Max. Marks : 100	
	Note	 s: 1. Solve all the five questions. 2. Each questions carry equal marks. 		
		UNIT – I		
1.	a)	If R is a UFD, then prove that the factorization of any element in R as a fi irreducible factors is unique to within order and unit factors.	nite product of	10
	b)	Prove that every PID is a UFD, but a UFD is not necessarily a PID.		10
		OR		
	c)	Prove that an irreducible element in a commutative principal ideal domain prime.	ı (PID) is always	10
	d)	Prove that the product of two primitive polynomials in a UFD is primitive	·.	10
		UNIT – II		
2.	a)	Let $F(x) \in \mathbb{Z} [x]$ be primitive. Then prove that $F(x)$ is reducible over Q if reducible over Z.	& only if F(x) is	10
	b)	Let $F \subseteq E \subseteq K$ be fields. If $[K:E] < \infty$ and $[E:F] < \infty$, then prove that i) $[K:F] < \infty$ ii) $[K:F] = [K:E] [E:F]$		10
		OR		
	c)	State and prove Eisenstein criterion.		10
	d)	Let E be an algebraic extension of F, and let $\sigma: E \rightarrow E$ be an embedding over F. Then prove that σ is onto and, hence an automorphism of E.	of E into itself	10
		UNIT – III		
3.	a)	If the multiplicative group F* of non zero elements of a field F is cyclic, this finite.	hen prove that F	10
	b)	If E is a finite separable extension of a field F, then prove that E is a simple F.	le extension of	10
		OR		

	c)	Prove that the prime field of a field F is either isomorphic to Q or to \mathbb{Z} /(P), P prime.		
	d)	Let $F \subset E \subset K$ be three fields such that E is a finite separable extension of F, and K is a finite separable extension of E. Then prove that K is a finite separable extension of F.	10	
$\mathbf{UNIT} - \mathbf{IV}$				
4.	a)	State & prove fundamental theorem of algebra.	10	
	b)	If $f(x) \in F[x]$ has r distinct roots in its splitting field E over F, then prove that the Galois group G(E/F) of $f(x)$ is a subgroup of the symmetric group S_r .	10	
	OR			
	c)	Prove that the Galois group of $x^3 - 2 \in Q[x]$ is the group of symmetries of the triangle.	10	
	d)	Prove that the Galois group of $x^4 - 2 \in Q[x]$ is the octic group (= group of symmetries of a square).	10	
5.	a)	Define : i) Unique Factorization Domain & ii) Euclidean domain	5	
	b)	Show that $x^3 + 3x + 2 \in \mathbb{Z}/(7)$ [x] is irreducible over the field $\mathbb{Z}/(7)$.	5	
	c)	Define : i) Splitting field & ii) Separable polynomial.	5	
	d)	Let $G = G\left(Q\left(\sqrt[3]{2}\right)/Q\right)$. Then find $ G $.	5	
