M.Sc.- I (Mathematics) New CBCS Pattern Semester-I

PSCMTH05D - Number Theory

P. Pages : 2

Max. Marks : 100

Notes: 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) State and prove Wilson's theorem.
b) Find the least positive integer x such that $x \equiv 5(\bmod 7), x \equiv 7(\bmod 11)$, and $x \equiv 3$ $(\bmod 13)$.

OR

c) Show that 1387 is composite.
d) Let q be a prime factor of $\mathrm{a}^{2}+\mathrm{b}^{2}$. If $\mathrm{q} \equiv 3(\bmod 4)$ then prove that $q \mid a$ and $q \mid b$.

UNIT - II

2. a) Show that the congruence $f(x) \equiv 0(\bmod p)$ of degree n has at most n solutions.
b) Solve $x^{2}+x+7(\bmod 81)$.

OR

c) If p is a prime and $(\mathrm{a}, \mathrm{p})=1$, then prove that the congruence $\mathrm{x}^{\mathrm{n}} \equiv \mathrm{a}(\bmod \mathrm{p})$ has $(\mathrm{n}, \mathrm{p}-1)$ solutions or no solution according as $\mathrm{a}^{(\mathrm{p}-1) /(\mathrm{n}, \mathrm{p}-1)} \equiv 1(\bmod \mathrm{p})$.
d) Show that the congruence $\mathrm{x}^{5} \equiv 6(\bmod 101)$ has 5 solutions.

UNIT - III

3. a) State and prove Gauss Lemma.
b) State and prove the Gaussian reciprocity law.
c) Derive de Polignac's formula.
d) Let x and y be real numbers. Then prove that
1) $[\mathrm{x}] \leq \mathrm{x}<[\mathrm{x}]+1, \mathrm{x}-1<[\mathrm{x}] \leq \mathrm{x}, 0 \leq \mathrm{x}-[\mathrm{x}]<1$
2) $[x]=\sum_{1 \leq i \leq x} 1$ if $x \geq 0$.
3) $[x+m]=[x]+m$ if m is an integer.
4) $[x]+[y] \leq[x+y] \leq[x]+[y]+1$

UNIT - IV

4. a) Prove that for every positive integer $n, \quad \sum_{d \backslash n} \phi(d)=n$
b) If $\mathrm{f}(\mathrm{n})=\sum_{\mathrm{d} \backslash \mathrm{n}} \mu(\mathrm{d}) \mathrm{F}(\mathrm{n} / \mathrm{d})$ for every positive integer n , then prove that $\mathrm{F}(\mathrm{n})=\sum_{\mathrm{d} \backslash \mathrm{n}} \mathrm{f}(\mathrm{d})$.

OR

c) Find all solutions of $999 x-49 y=5000$.
d) Show that the equation $y^{2}=x^{3}+7$ has no solution in integers.
5. a) Let f denote a polynomial with integral coefficients. If $a \equiv b(\bmod m)$ then prove that $\mathrm{f}(\mathrm{a}) \equiv \mathrm{f}(\mathrm{b})(\bmod \mathrm{m})$.
b) If $\mathrm{d} \mid(\mathrm{p}-1)$, then show that $\mathrm{x}^{\mathrm{d}} \equiv 1(\bmod \mathrm{p})$ has d solutions.
c) Prove that 3 is a quadratic residue of 13 , but a quadratic nonresidue of 7 .
d) Show that the equation $15 x^{2}-7 y^{2}=9$ has no solution in integers.

