M.Sc.- I (Mathematics) New CBCS Pattern Semester-I **PSCMTH05D - Number Theory**

P. Pages : 2 Time : Three Hours			GUG/W/23/13744 Max. Marks : 100	
	Not	es : 1. Solve all five questions. 2. All questions carry equal marks.		_
		UNIT – I		
1.	a)	State and prove Wilson's theorem.	Į	10
	b)	Find the least positive integer x such that $x \equiv 5 \pmod{7}$, $x \equiv 7 \pmod{11}$, (mod 13).	and $x \equiv 3$	10
		OR		
	c)	Show that 1387 is composite.	1	10
	d)	Let q be a prime factor of $a^2 + b^2$. If $q \equiv 3 \pmod{4}$ then prove that $q \mid a = 3$	and $\mathbf{q} \mid \mathbf{b}$.	10
		UNIT – II		
2.	a)	Show that the congruence $f(x) \equiv 0 \pmod{p}$ of degree n has at most n solu	tions.	10
	b)	Solve $x^2 + x + 7 \pmod{81}$.	1	10
		OR		
	c)	If p is a prime and $(a, p) = 1$, then prove that the congruence $x^n \equiv a \pmod{p}$ solutions or no solution according as $a^{(p-1)/(n,p-1)} \equiv 1 \pmod{p}$.	p) has $(n, p-1)$	10
	d)	Show that the congruence $x^5 \equiv 6 \pmod{101}$ has 5 solutions.	1	10
		UNIT – III		
3.	a)	State and prove Gauss Lemma.]	10
	b)	State and prove the Gaussian reciprocity law.	1	10
		OR		
	c)	Derive de Polignac's formula.	1	10
	d)	Let x and y be real numbers. Then prove that]	10
		1) $[x] \le x < [x] + 1, x - 1 < [x] \le x, 0 \le x - [x] < 1$		

1

GUG/W/23/13744

P.T.O

2)
$$[x] = \sum_{1 \le i \le x} 1 \text{ if } x \ge 0.$$

3) [x+m]=[x]+m if m is an integer.

4)
$$[x]+[y] \leq [x+y] \leq [x]+[y]+1$$

4. a) Prove that for every positive integer n,
$$\sum_{d \mid n} \phi(d) = n$$
 10

b) If $f(n) = \sum_{d \mid n} \mu(d) F(n/d)$ for every positive integer n, then prove that $F(n) = \sum_{d \mid n} f(d)$. 10

OR

	c)	Find all solutions of $999x - 49y = 5000$.	10
	d)	Show that the equation $y^2 = x^3 + 7$ has no solution in integers.	10
•	a)	Let f denote a polynomial with integral coefficients. If $a \equiv b \pmod{m}$ then prove that $f(a) \equiv f(b) \pmod{m}$.	5
	b)	If $d (p-1)$, then show that $x^d \equiv 1 \pmod{p}$ has d solutions.	5
	c)	Prove that 3 is a quadratic residue of 13, but a quadratic nonresidue of 7.	5
	d)	Show that the equation $15x^2 - 7y^2 = 9$ has no solution in integers.	5

5.