M.Sc. (Mathematics) New CBCS Pattern Semester-I PSCMTH05B - Core Elective - Ordinary Differential Equations

P. Pages : 4 Time : Three Hours			rs * 7 3 2 8 *	GUG/W/23/13742 Max. Marks : 100	
	Note	es: 1. 2.	Solve all five questions. Each question carries equal marks.		
			UNIT – I		
1.	a)		se a and b are continuous functions on an interval I. Let A be a function. Then prove that the function ψ given by	tion such that	10
		ψ(x)	$= e^{-A(x)} \int_{x_0}^x e^{A(t)} b(t) dt,$		
			x_0 is in I, is a solution of the equation. (x)y = b(x)		
			Also, prove that the function ϕ_1 given by = $e^{-A(x)}$		
		is a solution of the homogeneous equation y' + a(x)y = 0			
			show that if C is any constant, +C ϕ_1 is a solution of		
		•	(x)y = b(x) very solution of this differential equation has this form.		
	b)	Consi	der the equation		10
		Ly'+	Ry = E		
		Where	E L, R, E are positive constants.		
		i) S	olve this equation		
		ii) F	ind the solution ϕ satisfying, $\phi(0) = I_0$, where I_0 is a given positive	'e constant.	
		iii) S	how that every solution tends to E/R as $x \rightarrow \infty$.		
			OR		
	c)	•	that: olutions ϕ_1, ϕ_2 of $L(y) = 0$ are linearly independent on an interval I $v(\phi_1, \phi_2)(x) \neq 0$ x in I.	, if and only if	10

d) Compute the solution ψ of y''' + y' + y = 1 which satisfies $\psi(0) = 0, \psi'(0) = 1$, 10 $\psi''(0) = 0$.

UNIT – II

Let b be continuous as an interval I, and let $\phi_1, \phi_2, \dots, \phi_n$ be a basis for the solutions of c) $L(y) = y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y = 0$ on I, where a_1, a_2, \dots, a_n are continuous functions on an interval I. Then prove that every solution of $L(y) = y^{(n)} + a_1(x) y^{(n-1)} + \dots + a_n(x) y = b(x)$ Can be written as $\psi = \psi_p + C_1 \phi_1 + \dots + C_n \phi_n ,$

> Where ψ_p is a particular solution of L(y) = b(x) and C_1, C_2, \dots, C_n are constants. Also, prove that every such ψ is a solution of L(y) = b(x) and a particular solution ψ_p is given by

$$\psi_p(\mathbf{x}) = \sum_{k=1}^n \phi_k(\mathbf{x}) \int_{\mathbf{x}_0}^k \frac{\mathbf{w}_k(t)\mathbf{b}(t)}{\mathbf{w}(\phi_1, \dots, \phi_n)(t)} dt$$

d) Find all solutions of the equation $x^2y'' + xy' + 4y = 1$ for $|\mathbf{x}| > 0$.

Consider the equation b)

2.

a)

 $L(y) = y'' + a_1(x)y + a_2(x)y = 0$,

Where a_1, a_2 are continuous on some interval I. Show that a_1 and a_2 are uniquely determined by any basis ϕ_1, ϕ_2 for the solutions of L(y) = 0. show that

$$a_{1} = \frac{\begin{vmatrix} \phi_{1} & \phi_{2} \\ \phi_{1}'' & \phi_{2}'' \end{vmatrix}}{w(\phi_{1}, \phi_{2})}, \ a_{2} = \frac{\begin{vmatrix} \phi_{1}' & \phi_{2}' \\ \phi_{1}'' & \phi_{2}'' \end{vmatrix}}{w(\phi_{1}, \phi_{2})}$$

OR

and define K by $K = 1 + b_1 + \dots + b_n$ If x_0 is a point in I, and ϕ is a solution of $L(y) = y^{(n)} + a_1(x) y^{(n-1)} + \dots + a_n(x) y = 0$ on I. then prove that $\|\phi(x_0)\|e^{-k|x-x_0|} \le \|\phi(x)\| \le \|\phi(x_0)\|e^{k|x-x_0|}$

for all x in I.

Let b_1, \ldots, b_n be non-negative constants such that for all x in I. $|a_{j}(x)| \leq b_{j}, (j=1,...,n)$

10

10

10

UNIT – III

3. a) Let M, N be two real – valued functions which have continuous first partial derivatives on **10** some rectangle.

 $\begin{aligned} \mathbf{R} &: \left| \mathbf{x} - \mathbf{x}_{0} \right| \leq \mathbf{a}, \left| \mathbf{y} - \mathbf{y}_{0} \right| \leq \mathbf{b} \end{aligned}$ Then prove that the equation $\mathbf{M}(\mathbf{x}, \mathbf{y}) + \mathbf{N}(\mathbf{x}, \mathbf{y}) \, \mathbf{y}' = \mathbf{0} \end{aligned}$ is exact in R, if and only if, $\frac{\partial \mathbf{M}}{\partial \mathbf{y}} = \frac{\partial \mathbf{N}}{\partial \mathbf{x}}$

in R.

b) Prove that : A function ϕ is a solution of the initial value problem.

$$y' = f(x, y), y(x_0) = y_0$$

on an interval I if and only if it is a solution of the integral equation

$$y = y_0 + \int_{x_0}^{x} f(t, y) dt$$

on I.

OR

c) Let f be a real-valued continuous function on the strip

 $S: |x-x_0| \le a, |y| < \infty, (a > 0)$

and suppose that f satisfies on S a Lipschitz condition with constant k > 0. Then prove that the successive approximations $\{\phi_k\}$ for the problem.

 $y' = f(x, y), y(x_0) = y_0$

exist on the entire interval $|x - x_0| \le a$, and converge there to a solution of this initial value problem.

d) Let f, g be continuous on R, and suppose f satisfies a Lipschitz condition there with 10 Lipschitz constant K. Let ϕ, ψ be solutions of the two initial value problems

 $y' = f(x, y), y(x_0) = y_1,$

 $y' = g(x, y), y(x_0) = y_2,$

(where f, g are both continuous real - value - d functions on

 $R: |x-x_0| \le a, |y-y_0| \le b, (a, b > 0)$

and $(x_0, y_1), (x_0, y_2)$ are points in R) respectively on an interval I containing x_0 , with graphs contained in R. Then for non-negative constants \in , δ , if the inequalities.

 $|\mathbf{f}(\mathbf{x},\mathbf{y}) - \mathbf{g}(\mathbf{x},\mathbf{y})| \le \in ((\mathbf{x},\mathbf{y}) \operatorname{in} \mathbf{R})$

and $|y_1 - y_2| \le \delta$ are valid, then

$$\left|\phi(x) - \psi(x)\right| \le \delta e^{k\left|x - x_0\right|} + \frac{\epsilon}{k} (e^{k\left|x - x_0\right|} - 1)$$

for all x in I.

10

4. Find a solution ϕ of a)

$$y'' = -\frac{1}{2y^2}$$

Satisfying $\phi(0) = 1$, $\phi'(0) = -1$.

b) For each $y = (y_1, y_2, \dots, y_n)$ in C_n let $\|\mathbf{y}\| = (\mathbf{y}_1, \overline{\mathbf{y}}_1 + \dots + \mathbf{y}_n, \overline{\mathbf{y}}_n)^{1/2}$ The positive square root being understood. This is the Euclidean length of y.

- Show that $\|\mathbf{y}\| \le |\mathbf{y}| \le \sqrt{n} \|\mathbf{y}\|$ i)
- Show that a sequence $\{y_m\}, (m=1,2,....)$ of vectors in C_n is such that ii) $|\mathbf{y}_{\mathrm{m}} - \mathbf{y}| \rightarrow 0, \, (\mathbf{m} \rightarrow \infty)$ if and only if

$$\|\mathbf{y}_{m} - \mathbf{y}\| \rightarrow 0, \ (m \rightarrow \infty)$$

OR

- Let f be the vector valued function defined on c) $R: |x| \le 1, |y| \le 1, (y \text{ in } C_2)$
 - by $f(x, y) = (y_2^2 + 1, x + y_1^2)$.
 - Find an upper bound M for |f(x, y)| for (x, y) in R. i)
 - Compute a Lipschitz constant k for f on R. ii)
- d) Consider the system

$$y'_1 = 3y_1 + xy_3,$$

 $y'_2 = y_2 + x^3y_3,$
 $y'_3 = 2xy_1 - y_2 + e^xy_3$

Show that every initial value problem for this system has a unique solution which exists for all real x.

Find all solutions of the equation 5 a) $\mathbf{v}' + \mathbf{v} = \mathbf{e}^{\mathbf{X}}$ b) Find all solution of the equation 5 $x^2y'' + 2xy' - 6y = 0$ For x > 0Determine whether the equation c) $2xy dx + (x^2 + 3y^2) dy = 0$ is exact for $(x, y) \in \mathbb{R}^2$, and solve it. Solve the equation d) 5 y'' = yy''

4

5.

10

10

10