Notes: 1. Solve all five questions.
2. Each question carries equal marks.

UNIT - I

1. a) Suppose a and b are continuous functions on an interval I. Let A be a function such that $\mathrm{A}^{\prime}=\mathrm{a}$. Then prove that the function ψ given by
$\psi(x)=e^{-A(x)} \int_{x_{0}}^{x} e^{A(t)} b(t) d t$,
Where x_{0} is in I, is a solution of the equation.
$y^{\prime}+a(x) y=b(x)$
on I. Also, prove that the function ϕ_{1} given by
$\phi_{1}(x)=e^{-A(x)}$
is a solution of the homogeneous equation
$y^{\prime}+a(x) y=0$
Next, show that if C is any constant,
$\phi=\psi+\mathrm{C} \phi_{1}$ is a solution of
$y^{\prime}+a(x) y=b(x)$
and every solution of this differential equation has this form.
b) Consider the equation
$\mathrm{Ly}^{\prime}+\mathrm{Ry}=\mathrm{E}$
Where $\mathrm{L}, \mathrm{R}, \mathrm{E}$ are positive constants.
i) Solve this equation
ii) Find the solution ϕ satisfying, $\phi(0)=\mathrm{I}_{0}$, where I_{0} is a given positive constant.
iii) Show that every solution tends to E / R as $\mathrm{x} \rightarrow \infty$.

OR

c) Prove that:

Two solutions ϕ_{1}, ϕ_{2} of $\mathrm{L}(\mathrm{y})=0$ are linearly independent on an interval I , if and only if

$$
\mathrm{w}\left(\phi_{1}, \phi_{2}\right)(\mathrm{x}) \neq 0
$$

for all x in I .
d) Compute the solution ψ of $y^{\prime \prime \prime}+y^{\prime \prime}+y^{\prime}+y=1$ which satisfies $\psi(0)=0, \psi^{\prime}(0)=1$, $\psi^{\prime \prime}(0)=0$.

UNIT - II

2. a) Let $b_{1}, \ldots . . ., b_{n}$ be non-negative constants such that for all x in I.

$$
\left|a_{j}(x)\right| \leqq b_{j}, \quad(j=1, \ldots \ldots, n)
$$

and define K by

$$
\mathrm{K}=1+\mathrm{b}_{1}+\ldots \ldots . .+\mathrm{b}_{\mathrm{n}}
$$

If x_{0} is a point in I, and ϕ is a solution of

$$
\mathrm{L}(\mathrm{y})=\mathrm{y}^{(\mathrm{n})}+\mathrm{a}_{1}(\mathrm{x}) \mathrm{y}^{(\mathrm{n}-1)}+\ldots \ldots .+\mathrm{a}_{\mathrm{n}}(\mathrm{x}) \mathrm{y}=0
$$

on I, then prove that

$$
\left\|\phi\left(\mathrm{x}_{0}\right)\right\| \mathrm{e}^{-\mathrm{k}\left|\mathrm{x}-\mathrm{x}_{0}\right|} \leqq\|\phi(\mathrm{x})\| \leqq\left\|\phi\left(\mathrm{x}_{0}\right)\right\| \mathrm{e}^{\mathrm{k}\left|\mathrm{x}-\mathrm{x}_{0}\right|}
$$

for all x in I .
b) Consider the equation

$$
\mathrm{L}(\mathrm{y})=\mathrm{y}^{\prime \prime}+\mathrm{a}_{1}(\mathrm{x}) \mathrm{y}+\mathrm{a}_{2}(\mathrm{x}) \mathrm{y}=0,
$$

Where a_{1}, a_{2} are continuous on some interval I. Show that a_{1} and a_{2} are uniquely determined by any basis ϕ_{1}, ϕ_{2} for the solutions of $L(y)=0$. show that

$$
\mathrm{a}_{1}=\frac{\left|\begin{array}{ll}
\phi_{1} & \phi_{2} \\
\phi_{1}^{\prime \prime} & \phi_{2}^{\prime \prime}
\end{array}\right|}{\mathrm{w}\left(\phi_{1}, \phi_{2}\right)}, \mathrm{a}_{2}=\frac{\left|\begin{array}{ll}
\phi_{1}^{\prime} & \phi_{2}^{\prime} \\
\phi_{1}^{\prime \prime} & \phi_{2}^{\prime \prime}
\end{array}\right|}{\mathrm{w}\left(\phi_{1}, \phi_{2}\right)}
$$

OR

c) Let b be continuous as an interval I , and let $\phi_{1}, \phi_{2}, \ldots, \phi_{\mathrm{n}}$ be a basis for the solutions of $L(y)=y^{(n)}+a_{1}(x) y^{(n-1)}+\ldots . .+a_{n}(x) y=0$ on I, where $a_{1}, a_{2}, \ldots \ldots ., a_{n}$ are continuous functions on an interval I. Then prove that every solution of

$$
\mathrm{L}(\mathrm{y})=\mathrm{y}^{(\mathrm{n})}+\mathrm{a}_{1}(\mathrm{x}) \mathrm{y}^{(\mathrm{n}-1)}+\ldots \ldots . .+\mathrm{a}_{\mathrm{n}}(\mathrm{x}) \mathrm{y}=\mathrm{b}(\mathrm{x})
$$

Can be written as

$$
\psi=\psi_{\mathrm{p}}+\mathrm{C}_{1} \phi_{1}+\ldots . .+\mathrm{C}_{\mathrm{n}} \phi_{\mathrm{n}},
$$

Where ψ_{p} is a particular solution of $L(y)=b(x)$ and $C_{1}, C_{2}, \ldots \ldots, C_{n}$ are constants. Also, prove that every such ψ is a solution of $\mathrm{L}(\mathrm{y})=\mathrm{b}(\mathrm{x})$ and a particular solution ψ_{p} is given by

$$
\psi_{\mathrm{p}}(\mathrm{x})=\sum_{\mathrm{k}=1}^{\mathrm{n}} \phi_{\mathrm{k}}(\mathrm{x}) \int_{\mathrm{x}_{0}}^{\mathrm{k}} \frac{\mathrm{w}_{\mathrm{k}}(\mathrm{t}) \mathrm{b}(\mathrm{t})}{\mathrm{w}\left(\phi_{1}, \ldots ., \phi_{\mathrm{n}}\right)(\mathrm{t})} \mathrm{dt}
$$

d) Find all solutions of the equation
$x^{2} y^{\prime \prime}+x y^{\prime}+4 y=1$ for $|x|>0$.
3. a) Let M, N be two real - valued functions which have continuous first partial derivatives on some rectangle.

$$
\mathrm{R}:\left|\mathrm{x}-\mathrm{x}_{0}\right| \leq \mathrm{a},\left|\mathrm{y}-\mathrm{y}_{0}\right| \leq \mathrm{b}
$$

Then prove that the equation

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

is exact in R, if and only if,

$$
\frac{\partial \mathrm{M}}{\partial \mathrm{y}}=\frac{\partial \mathrm{N}}{\partial \mathrm{x}}
$$

in R.
b) Prove that : A function ϕ is a solution of the initial value problem.

$$
y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}
$$

on an interval I if and only if it is a solution of the integral equation

$$
y=y_{0}+\int_{x_{0}}^{x} f(t, y) d t
$$

on I.

OR

c) Let f be a real-valued continuous function on the strip

$$
\mathrm{S}:\left|\mathrm{x}-\mathrm{x}_{0}\right| \leq \mathrm{a},|\mathrm{y}|<\infty,(\mathrm{a}>0)
$$

and suppose that f satisfies on S a Lipschitz condition with constant $\mathrm{k}>0$. Then prove that the successive approximations $\left\{\phi_{\mathrm{k}}\right\}$ for the problem.

$$
y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}
$$

exist on the entire interval $\left|x-x_{0}\right| \leq a$, and converge there to a solution of this initial value problem.
d) Let f, g be continuous on R , and suppose f satisfies a Lipschitz condition there with

Lipschitz constant K. Let ϕ, ψ be solutions of the two initial value problems

$$
\begin{aligned}
& \mathrm{y}^{\prime}=\mathrm{f}(\mathrm{x}, \mathrm{y}), \quad \mathrm{y}\left(\mathrm{x}_{0}\right)=\mathrm{y}_{1}, \\
& \mathrm{y}^{\prime}=\mathrm{g}(\mathrm{x}, \mathrm{y}), \quad \mathrm{y}\left(\mathrm{x}_{0}\right)=\mathrm{y}_{2},
\end{aligned}
$$

(where f, g are both continuous real - value -d functions on

$$
R:\left|x-x_{0}\right| \leq a,\left|y-y_{0}\right| \leq b,(a, b>0)
$$

and $\left(\mathrm{x}_{0}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{0}, \mathrm{y}_{2}\right)$ are points in R$)$ respectively on an interval I containing x_{0}, with graphs contained in R . Then for non-negative constants \in, δ, if the inequalities.

$$
|f(x, y)-g(x, y)| \leq \in((x, y) \text { in } R)
$$

and $\left|y_{1}-y_{2}\right| \leq \delta$
are valid, then

$$
|\phi(\mathrm{x})-\psi(\mathrm{x})| \leq \delta \mathrm{e}^{\mathrm{k}\left|\mathrm{x}-\mathrm{x}_{0}\right|}+\frac{\in}{\mathrm{k}}\left(\mathrm{e}^{\mathrm{k}\left|\mathrm{x}-\mathrm{x}_{0}\right|}-1\right)
$$

for all x in I .

UNIT - IV

4. a) Find a solution ϕ of

$$
y^{\prime \prime}=-\frac{1}{2 y^{2}}
$$

Satisfying $\phi(0)=1, \phi^{\prime}(0)=-1$.
b) For each $\mathrm{y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots \ldots ., \mathrm{y}_{\mathrm{n}}\right)$ in C_{n} let

$$
\|\mathrm{y}\|=\left(\mathrm{y}_{1}, \overline{\mathrm{y}}_{1}+\ldots \ldots . .+\mathrm{y}_{\mathrm{n}}, \overline{\mathrm{y}}_{\mathrm{n}}\right)^{1 / 2}
$$

The positive square root being understood. This is the Euclidean length of y.
i) Show that $\|\mathrm{y}\| \leq|\mathrm{y}| \leq \sqrt{\mathrm{n}}\|\mathrm{y}\|$
ii) Show that a sequence $\left\{y_{m}\right\},(m=1,2, \ldots .$.$) of vectors in C_{n}$ is such that $\left|\mathrm{y}_{\mathrm{m}}-\mathrm{y}\right| \rightarrow 0,(\mathrm{~m} \rightarrow \infty)$
if and only if

$$
\left\|y_{m}-y\right\| \rightarrow 0,(m \rightarrow \infty)
$$

OR

c) Let f be the vector - valued function defined on

$$
\mathrm{R}:|\mathrm{x}| \leq 1,|\mathrm{y}| \leq 1,\left(\mathrm{y} \text { in } \mathrm{C}_{2}\right)
$$

by $f(x, y)=\left(y_{2}^{2}+1, x+y_{1}^{2}\right)$.
i) Find an upper bound M for $|\mathrm{f}(\mathrm{x}, \mathrm{y})|$ for (x, y) in R .
ii) Compute a Lipschitz constant k for f on R .
d) Consider the system

$$
\begin{aligned}
& y_{1}^{\prime}=3 y_{1}+x y_{3}, \\
& y_{2}^{\prime}=y_{2}+x^{3} y_{3}, \\
& y_{3}^{\prime}=2 x y_{1}-y_{2}+e^{x} y_{3}
\end{aligned}
$$

Show that every initial value problem for this system has a unique solution which exists for all real x .
5. a) Find all solutions of the equation

$$
y^{\prime}+y=e^{x}
$$

b) Find all solution of the equation

$$
x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y=0
$$

For $\mathrm{x}>0$
c) Determine whether the equation

$$
2 x y d x+\left(x^{2}+3 y^{2}\right) d y=0
$$

is exact for $(x, y) \in R^{2}$, and solve it.
d) Solve the equation

$$
y^{\prime \prime}=y y^{\prime \prime}
$$

