M.Sc. - I (Mathematics) New CBCS Pattern Semester-I

PSCMTH05(A) - Numerical Analysis (Optional Paper)
P. Pages : 2

GUG/W/23/13741
Time : Three Hours

Max. Marks : 100

Notes: 1. Solve all five questions.
2. Each questions carries equal marks.

UNIT - I

1. a) Let $f(x), f^{\prime}(x), f^{\prime \prime}(x)$ are continuous for all value of x in some interval containing α and assume $\mathrm{f}^{\prime}(\alpha) \neq 0$ then prove that if the initial guesses x_{0} and x_{1} are chosen sufficiently close to α the iterates x_{n} of $x_{n+1}=x_{n}-f\left(x_{n}\right)=\frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}, n \geq 1$ will converge to α. The order of convergence will be $P=(1+\sqrt{5}) / 2 \simeq 1.62$.
b) Apply the Newton's method for the function

$$
\begin{aligned}
f(x) & =\sqrt{x}, x \geq 0 \\
& =-\sqrt{-x}, x<0
\end{aligned}
$$

with root $\alpha=0$. What is the behavior of the iterates? Do they converge, and if so at what rate?

OR

c) Assumes $f(x), f^{\prime}(x), f^{\prime \prime}(x)$ are continuous for all x in some neighbourhood of α and assume $f(\alpha)=0$ sufficiently close to α the iterates $x_{n}, n \geq 0$ of $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$, will converge to α.
d) Discuss Muller's method for finding roots of a polynomial. Discuss why Muller's method is better than the secant method.

UNIT - II

2. a) Prove that for $\mathrm{k} \geq 0$
$\mathrm{f}\left[\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots \ldots . . \mathrm{x}_{\mathrm{k}}\right]=\frac{1}{\mathrm{k}!\mathrm{n}^{\mathrm{k}}} \Delta^{\mathrm{k}} \mathrm{f}_{0}$ where $\mathrm{f}_{0}=\mathrm{f}\left(\mathrm{x}_{0}\right) \& \mathrm{f}_{\mathrm{i}}=\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)$.
b) Define $\mathrm{n}^{\text {th }}$ order of Newton's divided difference of a function f namely $\mathrm{f}\left[\mathrm{x}_{0}, \ldots \ldots . . \mathrm{x}_{\mathrm{n}}\right]$ show that $\mathrm{f}\left[\mathrm{x}_{0}, \ldots \ldots . . \mathrm{x}_{\mathrm{n}}\right]=\frac{\mathrm{f}\left[\mathrm{x}_{1}, \ldots \ldots . . \mathrm{x}_{\mathrm{n}}\right]-\mathrm{f}\left[\mathrm{x}_{0}, \ldots \ldots . . \mathrm{x}_{\mathrm{n}-1}\right]}{\mathrm{x}_{\mathrm{n}}-\mathrm{x}_{0}}$.
c)

For the basis functions $I_{j, n}(x)$ given by $I_{i}(x)=\prod_{j \neq i}\left(\frac{x-x_{j}}{x_{i}-x_{j}}\right), i=1,2, \ldots \ldots, n$. Then prove that for $\mathrm{n} \geq 1, \sum_{\mathrm{j}=0}^{\mathrm{n}} \mathrm{l}_{\mathrm{j}, \mathrm{n}}(\mathrm{x})=1$ for all x .
d) For any two functions f and g, for any constant α and β prove that

$$
\Delta^{\mathrm{r}}(\alpha \mathrm{f}(\mathrm{x})+\beta \mathrm{g}(\mathrm{x}))=\alpha \Delta^{\mathrm{r}} \mathrm{f}(\mathrm{x})+\beta \Delta^{\mathrm{r}} \mathrm{~g}(\mathrm{x}) \text { for } \mathrm{r} \geq 0
$$

UNIT-III

3. a) Let $f(x)$ be continuous for $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$ and Let $\in>0$ then prove that there is a polynomial $p(x)$ for which

$$
|f(x)-p(x)| \leq \in, a \leq x \leq b
$$

b) Prove that for $f, g \in c[a, b]$

$$
|(\mathrm{f}, \mathrm{~g})| \leq\|\mathrm{f}\|_{2} \cdot\|\mathrm{~g}\|_{2}
$$

OR

c) Find the linear least square approximation of the function $f(x)=e^{x}-1 \leq x \leq 1$.
d) To obtain a minimax polynomial approximation $q_{1}^{*}(x)$ for the function $f(x)=e^{x}$ on the interval $[-1,1]$.

UNIT - IV

4. a) Obtain the expression for Peano-Kernel error formula.
b) Obtain the composite trapezoidal rule with error. Find the expression for the asymptotic error.

OR

c) Obtain the formula for the simple Simpson's rule of integration, obtain error estimate.
d) Derive Newton - cotes integration formula for $\mathrm{n}=1$.
5. a) Show that, if $g(x)$ be continuous for $\mathrm{a} \leq \mathrm{x} \leq$ b and assume that $\mathrm{a} \leq \mathrm{g}(\mathrm{x}) \leq \mathrm{b}$ for every $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$. Then $\mathrm{x}=\mathrm{g}(\mathrm{x})$ has at least one solution in $[\mathrm{a}, \mathrm{b}]$.
b) Obtain the expression for $p_{1}(x)$ by Lagrange interpolation.
c) For $\mathrm{f}, \mathrm{g} \in \mathrm{c}[\mathrm{a}, \mathrm{b}]$. Then prove that $\|\mathrm{f}+\mathrm{g}\|_{2} \leq\|\mathrm{f}\|_{2}+\|\mathrm{g}\|_{2}$.
d) Obtain Simple Trapezoidal Rule.

