## Notes: 1. Solve all five questions.

2. Each questions carry equal marks.

## UNIT - I

1. a) Prove that the span of any subset $S$ of a vector space $V$ is a subspace of $V$. Moreover, prove that any subspace of $V$ that contains $S$ must also contain the span of $S$.
b) If a vector space is generated by a finite set $S$, then prove that some subset of $S$ is a basis for V .

## OR

c) Let W be a subspace of a finite dimensional vector space V . Then prove that W is finite dimensional \& $\operatorname{dim}(W) \leq \operatorname{dim}(V)$. Prove that if $\operatorname{dim}(W)=\operatorname{dim}(V)$, then $V=W$.
d) Let $S$ be a linearly independent subset of a vector space V. Prove that there exists a maximal linearly independent subset of V that contains S .

UNIT - II
2. a) Let $V \& W$ be vector spaces \& $T: V \rightarrow W$ be linear. Then prove that null space $N(T)$ of $T$ and range $\mathrm{R}(\mathrm{T})$ of T are subspaces of V \& W , respectively.
b) Let $\mathrm{V} \& \mathrm{~W}$ be finite dimensional vector spaces with ordered bases $\beta \& \gamma$, respectively.

Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be linear. Then prove that T is invertible iff $[\mathrm{T}]_{\beta}^{\gamma}$ is invertible
Furthermore, prove that $\left[\mathrm{T}^{-1}\right]_{\gamma}^{\beta}=\left([\mathrm{T}]_{\beta}^{\gamma}\right)^{-1}$.

## OR

c) Let $\mathrm{V} \& \mathrm{~W}$ be vector spaces, \& let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be linear. If V is finite-dimensional, then prove that nullity $(\mathrm{T})+\operatorname{rank}(\mathrm{T})=\operatorname{dim}(\mathrm{V})$.
d) Let V \& W be finite-dimensional vector spaces over the same field. Then prove that V is isomorphic to W iff $\operatorname{dim}(\mathrm{V})=\operatorname{dim}(\mathrm{W})$.
UNIT - III
3. a) Find all the eigen vectors of the matrix $\mathrm{A}=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$ \& prove that A is diagonalizable.
b) State \& prove Cayley - Hamilton theorem.

## OR

c) Let T be a linear operator on a vector space V , and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{k}}$ be distinct eigen values of $T$. If $V_{1}, V_{2}, \ldots, V_{k}$ are eigen vectors of $T$ such that $\lambda_{i}$ corresponds to $V_{i}$ $(1 \leq \mathrm{i} \leq \mathrm{k})$, then prove that $\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots ., \mathrm{V}_{\mathrm{k}}\right\}$ is linearly independent.
d) Let T be a linear operator on a finite-dimensional vector space $\mathrm{V}, \&$ let $\lambda$ be an eigenvalue of $T$ having multiplicity $m$. Then prove that $1 \leq \operatorname{dim}\left(E_{\lambda}\right) \leq m$.

## UNIT - IV

4. a) Let V be an inner product space \& $\mathrm{S}=\left\{\mathrm{W}_{1}, \mathrm{~W}_{2}, \ldots . . ., \mathrm{W}_{\mathrm{n}}\right\}$ be a linearly independent
subset of V . Define $\mathrm{S}^{\prime}=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots \ldots, \mathrm{~V}_{\mathrm{n}}\right\}$, where $\mathrm{V}_{1}=\mathrm{W}_{1}$ and $\mathrm{V}_{\mathrm{k}}=\mathrm{W}_{\mathrm{k}}-\sum_{\mathrm{j}=1}^{\mathrm{k}-1} \frac{\left\langle\mathrm{~W}_{\mathrm{k}}, \mathrm{V}_{\mathrm{j}}\right\rangle}{\left\|\mathrm{V}_{\mathrm{j}}\right\|^{2}}$
For $2 \leq \mathrm{k} \leq \mathrm{n}$. Then prove that is an orthogonal set of nonzero vectors such that $\operatorname{span}\left(S^{\prime}\right)=\operatorname{span}(S)$.
b) Let V be a finite-dimensional inner product space over F , \& let $\mathrm{g}: \mathrm{V} \rightarrow \mathrm{F}$ be a linear transformation. Then prove that there exists a unique vector $\mathrm{y} \in \mathrm{V}$ such that $\mathrm{g}(\mathrm{x})=\langle\mathrm{x}, \mathrm{y}\rangle$ for all $x \in V$.

## OR

c) Let T be a linear operator on a finite-dimensional vector space V , \& let $\lambda$ be an eigen value of T . Then prove that $\mathrm{k}_{\lambda}$ has an ordered basis consisting of a union of disjoint cycles of generalized eigen vectors corresponding to $\lambda$.
d) Let T be a linear operator on a finite-dimensional inner product space V. Suppose that the characteristic polynomial of T splits. Then prove that there exists an orthonormal basis $\beta$ for V such that the matrix $[\mathrm{T}]_{\beta}$ is upper triangular.
5. a) Define linearly dependent set \& basis.
b) Define invertible linear transformation \& null space.
c) Find the eigenvalues of the matrix $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$
d) Define :
i) Unitary operator
ii) The adjoint of a linear operator.

