M.Sc.- I (Mathematics) New CBCS Pattern Semester-I PSCMTH04 : Linear Algebra

P. Pages : 2 Time : Three Hours ______
Max. Marks : 100

Notes : 1. Solve all **five** questions.

2. Each questions carry equal marks.

UNIT – I

- 1. a)Prove that the span of any subset S of a vector space V is a subspace of V. Moreover,
prove that any subspace of V that contains S must also contain the span of S.10
 - b) If a vector space is generated by a finite set S, then prove that some subset of S is a basis 10 for V.

OR

- c) Let W be a subspace of a finite dimensional vector space V. Then prove that W is finite dimensional & $\dim(W) \le \dim(V)$. Prove that if $\dim(W) = \dim(V)$, then V = W.
- d) Let S be a linearly independent subset of a vector space V. Prove that there exists a maximal linearly independent subset of V that contains S.

UNIT – II

- 2. a) Let V & W be vector spaces & $T: V \rightarrow W$ be linear. Then prove that null space N(T) of T 10 and range R(T) of T are subspaces of V & W, respectively.
 - b) Let V & W be finite dimensional vector spaces with ordered bases $\beta \& \gamma$, respectively. 10 Let T: V \rightarrow W be linear. Then prove that T is invertible iff $[T]_{\beta}^{\gamma}$ is invertible

Furthermore, prove that $\left[T^{-1}\right]_{\gamma}^{\beta} = \left(\left[T\right]_{\beta}^{\gamma}\right)^{-1}$.

OR

- c) Let V & W be vector spaces, & let $T: V \rightarrow W$ be linear. If V is finite-dimensional, then **10** prove that nullity $(T) + \operatorname{rank} (T) = \dim (V)$.
- d) Let V & W be finite-dimensional vector spaces over the same field. Then prove that V is 10 isomorphic to W iff dim (V) = dim (W).

UNIT – III

3. a) Find all the eigen vectors of the matrix $A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$ & prove that A is diagonalizable. 10

OR

- c) Let T be a linear operator on a vector space V, and let $\lambda_1, \lambda_2, ..., \lambda_k$ be distinct eigen 10 values of T. If $V_1, V_2, ..., V_k$ are eigen vectors of T such that λ_i corresponds to V_i $(1 \le i \le k)$, then prove that $\{V_1, V_2, ..., V_k\}$ is linearly independent.
- d) Let T be a linear operator on a finite-dimensional vector space V, & let λ be an **10** eigenvalue of T having multiplicity m. Then prove that $1 \le \dim(E_{\lambda}) \le m$.

UNIT - IV

4. a) Let V be an inner product space & S = {W₁, W₂,...., W_n} be a linearly independent 10 subset of V. Define S' = {V₁, V₂,...., V_n}, where V₁ = W₁ and V_k = W_k - $\sum_{j=1}^{k-1} \frac{\langle W_k, V_j \rangle}{\|V_j\|^2}$

For $2 \leq k \leq n$. Then prove that is an orthogonal set of nonzero vectors such that $span(S') = span\left(S\right)$.

b) Let V be a finite-dimensional inner product space over F, & let $g: V \to F$ be a linear 10 transformation. Then prove that there exists a unique vector $y \in V$ such that $g(x) = \langle x, y \rangle$ for all $x \in V$.

OR

- c) Let T be a linear operator on a finite-dimensional vector space V, & let λ be an eigen 10 value of T. Then prove that k_{λ} has an ordered basis consisting of a union of disjoint cycles of generalized eigen vectors corresponding to λ .
- d) Let T be a linear operator on a finite-dimensional inner product space V. Suppose that the 10 characteristic polynomial of T splits. Then prove that there exists an orthonormal basis β for V such that the matrix $[T]_{\beta}$ is upper triangular.
- 5. a) Define linearly dependent set & basis.
 - b) Define invertible linear transformation & null space.
 - c) Find the eigenvalues of the matrix $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$
 - d) Define :
 - i) Unitary operator
 - ii) The adjoint of a linear operator.

5

5

5

5