M.Sc. - I (Mathematics) New CBCS Pattern Semester-I PSCMTH03 - Topology-I

P. P. Tim	ages : e : Thr	2 ee Hours	* 7 3 2 5 *	GUG/W/23/13739 Max. Marks : 100
	Note	 : 1. Solve all five questi 2. Each question carrie 	ons. es equal marks.	
			UNIT - I	
1.	a)	If $A \leq B$ and $B \leq A$, then pr	ove that $A \sim B$.	10
	b)	Prove that every infinite set	contains a denumerable subset.	10
	c)	Prove that the set of all real r	OR numbers is uncountable.	10
	d)	Prove that $2^{N_0} = \subset$ where 2^{N_0}	N denotes the Hebrew alphabet aleph	ı. 10
			UNIT – II	
2.	a)	Let $x = \{a, b, c\}$ & let $\tau = \{\phi\}$	$(a, \{a\}, \{a, b\}, x\}$. Then find $d(\{a\})$ &	$d(\{c\}). 10$
	b)	For any set E in a topologica	l space, prove that $C(E) = E \cup d(E)$. 10
			OR	
	c)	For any set E in a topologica	l space (x, τ) , prove that $i(E) = \left[C($	$\left(E^{C}\right)^{C}$ 10
	d)	Prove that A set is a closed s subset of the space.	ubset of a topological space iff its co	emplement is an open 10
			UNIT – III	
3.	a)	Prove that the union E of any intersection is a connected se	7 family $\{C_{\lambda}\}$ of connected sets having the formula of the set of the se	ng a nonempty 10
	b)	If f is a continuous mapping connected subset of x onto a	of (x, τ) into (x^*, τ^*) , then prove the connected subset of x^*	at f maps every 10
			OR	
	c)	Prove that a compact subset	of a topological space is countably co	ompact. 10
	d)	If f is a one-to-one continuou	as mapping of (x, τ) into (x^*, τ^*) , th	en prove that f maps 10

every dense-in-itself subset of x onto a dense-in-it self subset of x^* .

$\mathbf{UNIT} - \mathbf{IV}$

4.	a)	Prove that In a T_1 -space X, a point x is a limit point of a set E iff every open set containing x contains an infinite number of distinct points of E.				
	b)	Prove that every compact Hausdorff space is normal.	10			
		OR				
	c)	Prove that a topological space X satisfying the first axiom of countability is a Hausdorff space iff every convergent sequence has a unique limit.	10			
	d)	1) Prove that a topological space X is a T_0 – space iff the closures of distinct points are distinct.				
5.	a)	Define & give an example of equipotent sets & countable sets.	5			
	b)	Define a topology for a set X & give an example of a topology for some set X.	5			
	c)	Define (i) separation (ii) compact set (iii) Homeomorphism.	5			
	d)	Define (i) T_0 -space (ii) T_1 - space iii) T_2 - space.	5			
