P. Pages: 2

Time : Three Hours

Max. Marks: 100

Notes : 1. Solve all **five** questions.

2. Each question carries equal marks.

UNIT – I

- 1. a) Prove that the sequence of functions $\{f_n\}$ defined on E, converges uniformly on E iff for 10 every $\in > 0$ there exists an integer N such that $m \ge N$, $n \ge N$, $x \in E$ implies $|f_n(x) - f_m(x)| \le \epsilon$.
 - b) Suppose $\{f_n\}$ is a sequence of functions, differentiable on [a, b] and such that $\{f_n(x_0)\}$ 10 converges for some point x_0 on [a, b]. If $\{f'_n\}$ converges uniformly on [a,b], then prove

that $\{f_n\}$ converges uniformly on [a, b] to a function f, and f'(x) = $\lim_{n \to \infty} f_n'(x)$ (a $\le x \le b$). OR

- c) Let α be monotonically increasing on [a,b]. Suppose $f_n \in R(\alpha)$ on [a, b], for n = 1, 2, 103,----, and suppose $f_n \to f$ uniformly on [a, b]. Then prove that $f \in R(\alpha)$ on [a,b], and $\int_{a}^{b} f d\alpha = \lim_{n \to \infty} \int_{a}^{b} f_n d\alpha.$
- d) State & prove the stone-Weier strass theorem.

UNIT – II

- 2. a) If X is a complete metric space, and if ϕ is a contraction of X into X, then prove that there 10 exists one and only one $x \in X$ such that $\phi(x) = x$.
 - b) Suppose f is a τ' mapping of an open set $\in \subset \mathbb{R}^n$ into \mathbb{R}^n , F'(a) is invertible for some **10** $a \in e$ and b = f(a). Then prove that
 - a) there exist open sets $U \And V$ in IR^n such that $a \in U$, $b \in V$, F is one-to-one on U, and f(U) = V;
 - b) If g is the inverse of F, defined in V by $g(f(x)) = x (x \in U)$, then $g \in \tau'(V)$.

- c) Suppose F maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m . Then prove that $f \in \xi'(E)$ if & only if the partial derivatives D_jF_i exist and are continuous on E for $1 \le i \le m, 1 \le j \le n$.
- d) Suppose E is an open set in \mathbb{R}^n , F maps E into \mathbb{R}^m , F is differentiable at $x_0 \in E$, g maps an open set containing F(E) into \mathbb{R}^k , and g is differentiable at $F(x_0)$. Then prove that the mapping F of E into \mathbb{R}^k defined by F(x) = g(f(x)) is differentiable at x_0 , and $F'(x_0) = g'(f(x_0))$.

10

10

UNIT – III

- 3. a) Prove that $GL(n, lR) \& GL(n, \alpha)$ are manifold of dimension $n^2 \& 2n^2$ respectively. 10
 - b) Prove that any atlas $u = \{(U_{\alpha}, \phi_{\alpha})\}$ on a locally Euclidean space is contained in a unique **10** maximal atlas.

OR

- c) Consider S' as the unit circle in the real plane IR^2 with defining equation $x^2 + y^2 = I$, 10 and describe a C^{∞} atlas with four charts on it.
- d) Let $\{(U_{\alpha}, \phi_{\alpha})\}$ be an atlas on a locally Euclidean space. If two charts (V, Ψ) and (W, δ) 10 are both compatible with the atlas $\{(U_{\alpha}, \phi_{\alpha})\}$, then prove that they are compatible with each other.

UNIT – IV

- 4. a) Let M & N be manifolds and $\pi: MxN \to M$, $\pi(p,q) = p$. the projection to the first factor. 10 Prove that π is a C^{∞} map.
 - b) If (U,ϕ) is a chart on a manifold M of dimension n, then prove that the co-ordinate map $\phi: U \rightarrow \phi(U) \subset \mathbb{R}^n$ is a diffeomorphism.

OR

- c) Suppose $F: N \to M$ is C^{∞} at $P \in N$. If (U, ϕ) is any chart about P in N and (V, Ψ) is any chart about F(P) in M, then prove that $\Psi_{\circ} F_{\circ} \phi^{-1}$ is C^{∞} at $\phi(P)$.
- d) Let M be a manifold of dimensions n, and $F: M \rightarrow IR$ a real valued function on M. Prove **10** that the following are equivalent :
 - i) The function $F: M \to IR$ is C^{∞} .
 - ii) The manifold. M has an atlas such that for every chart (U,ϕ) in the atlas, $F_{\circ}\phi^{-1}: \mathbb{R}^n \supset \phi(U) \rightarrow \mathbb{R}$ is \mathbb{C}^{∞} .
 - iii) For every chart (V, Ψ) on M, the function $F_{\circ} \Psi^{-1} : IR^n \supset \Psi(V) \rightarrow IR$ is $C^{\circ\circ}$.

5.	a)	Define	5
	,	i) Equicontinuous family	
		ii) Pointwise bounded & uniformly bounded sequence of functions.	
	b)	Define	5
		i) Differentiable function ii) Partial derivatives	
	c)	Define :	5
		i) Locally Euclidean of dimension n topological space.	
		ii) Atlas	
	d)	If $F: N \to M \& G: M \to P$ are C^{∞} maps of manifolds, then prove that the composite	5
		$G_{\circ} F: N \rightarrow P$ is C^{∞} .	
