B.Sc. T.Y. (CBCS Pattern) Semester - VI USDSEPHT14 - Physics Paper-II : Digital and Analog Circuits and

Instrumentation

GUG/S/23/13366

Time : Three Ho			Hours	* 1 9 1 2 * Max. Ma	Max. Marks : 50	
	Notes :		1. 2. 3.	All questions are compulsory and carry equal marks. Draw neat and labelled diagrams wherever necessary. Use of log table/ calculator is allowed.		
		Ei	ther:			
1.	A)	i)	Ex _] log	plain Half adder circuits with draw symbol, Boolean equation, truth table and gic diagram.	5	
		ii)	Ex _j dia	plain full adder circuits with draw symbol, Boolean equation, truth table and logi gram.	ic 5	
				OR		
	B)	a)	Dra	aw symbol, Boolean equation, truth table and logic diagram of NAND. Gates.	21/2	
		b)	Ex	plain De-Morgan's Theorem.	21/2	
		c)	Wł	nat is EX-OR gate? Draw its logic symbol & give its truth table.	21/2	
		d)	Sul i)	btracts the following by 9's complement method. 68-53 = ?	21/2	
		Ei	ther:			
2.	A)	i)	Ex _j	plain the P-type and N-type semiconductor.	5	
		ii)	Dra	aw and explain the forward bias? Reverse bias characteristics of PN junction diod	1e. 5	
				OR		
	B)	a)	Dis	stinguish between Half wave, full wave and full wave bridge rectifier.	21/2	
		b)	Ex	plain L section filter.	21/2	
		c)	Ex	plain construction and working of LED.	21/2	
		d)	Ex	plain Zener diode is use as voltage regulator.	21/2	
		Ei	ther:			
3.	A)	i)	Wł	nat is transistor? Draw the symbols of NPN and PNP transistor.	2	
		ii)	Exj	plain the working of NPN transistor.	3	

P. Pages: 3

		iii)	Explain input and output characteristics of a transistor in CE configuration.	3		
		iv)	A transistor has $\alpha = 0.99$. The transistor is connected with its emitter grounded. If the base current is changed by 0.2 mA. Calculate the change in collector current.	2		
			OR			
	B)	a)	Define α and β . Derive the relation $\alpha = \beta / 1 + \beta$.	21/2		
		b)	Explain output characteristics of a transistor in CB configuration.	21/2		
		c)	Explain the concept of dc load line and operating point.	21/2		
		d)	In a transistor circuit the emitter and collector currents are measured at 5 mA and 4.9 mA respectively. Calculate β of the transistor.	21/2		
		Eitl	her:			
4.	A)	i)	Draw the circuit diagram and explain the working of inverting amplifier using Op-Amplifier.	5		
		ii)	Explain the concept of virtual ground in inverting amplifier.	3		
		iii)	For an inverting feedback amplifier. Find the output voltage, if the input voltage is $0.6V$. Given : R1 = 10 k ohm and RF = 5 k ohm.	2		
			OR			
	B)	a)	Explain the working of Op-AMP as a adder.	2 ¹ / ₂		
		b)	State the characteristics of ideal operational amplifier.	2 ¹ / ₂		
		c)	Explain OP-amp as a Differentiator.	21/2		
		d)	A difference amplifier has a difference mode voltage gain 100 and CMMR = 100. Calculate the output voltage. If the input voltage are $V1 = 1 \text{ mV}$ and $V2 = 0.9 \text{ mV}$.	21/2		
5.		Sol	Solve any ten of the following.			
		a)	Draw symbol, Boolean equation and truth table of NOT gate.	1		
		b)	Write the classification of Number system.	1		
		c)	Perform following conversions: i) $(2F9A)_{16} = ()_2$ ii) $(CA)_{16} = ()_2$	1		
		<i>(</i> L	What is the value of out in voltage of C_2 and C_1 diada?	1		
		u)	Define rights forten	1		
		e)	Define ripple factor.	1		

f)	How to form depletion region in p-n junction diode.	1		
g)	Define: i) Cutoff region ii) Saturation region	1		
h)	Define current gain in CB mode.			
i)	What is transistor?	1		
j)	Define CMRR of an operational amplifier.			
k)	State OP-AMP as an non Inverting amplifier.	1		
1)	What is feedback?	1		
