B.Sc. Third Year CBCS Pattern Semester-VI USDSEPHT13 - Physics Paper-I : Nuclear and Particle Physics

P. F Tim	Pages : ne : Th	3 ree I	Iour	s * 6 7 6 1 *	GUG/W/23/13 Max. Marks	3365 : 50
	Note	es :	1. 2.	All questions are compulsory. Draw neat & well labelled diagram wherever necessary.		
Either:						
1.	a)	i)	E	xplain basic properties of nucleus in terms of Nuclear size, mass, ch	narge & density.	4
		ii)	W gr	That do you mean by mass defect & binding energy of nucleus. Dra aph of binding energy per nucleon versus mass number.	aw & explain the	4
		iii)	Ca M M M	alculate the binding energy of an α – particle from the following d fass of helium nucleus = 4.002870 u fass of proton = 1.007825 u fass of neutron = 1.008665 u. & 1u = 931.5 MeV.	ata.	2
				OR		
	b)	i)	E	xplain spin, orbital & total angular momentum of nucleons.		21/2
		ii)	D	erive an expression for magnetic moment of an atom.		21/2
		iii)	Ez	xplain packing fraction & its variation with mass number.		21/2
		iv)	Fi m	nd the binding energy of deuteron from the following data: $m_p = 1.007276u$, $m_n = 1.008665u$, & $M_N = 2.013553u$.		21/2
		Eit	her:			
2.	a)	i)	0	btain an expression for binding energy of a nucleus on the basis of li	quid drop model.	5
		ii)	St	ate the main assumptions of shell model of the nucleus. Write its m	nerits & failures.	5
				OR		
	b)	i)	D	iscuss the origin & concept of nuclear forces.		21/2
		ii)	G	ive the main assumptions of liquid drop model of the nucleus.		21/2
		iii)	W m	That are magic numbers of nuclei? How does the shell model explain agic numbers 2, 8, 20 & 28 only?	n the existence of	21/2
		iv)	E	xplain fermi gas model of the nucleus.		21/2

Either:

3.	a) i) Explain various types of nuclear reactions, which may occur when a high particle approaches a target nucleus.			
		ii)	Derive the Neil-Bohr's formula.	4
		iii)	Describe different ways by which γ -rays interact with matter.	3
			OR	
	b)	i)	Discuss various conservation laws in nuclear reaction.	21/2
		ii)	Define & explain Q-value of nuclear reaction.	2 ¹ / ₂
		iii)	What are exothermic & endothermic nuclear reaction? Give suitable examples.	2¹/ ₂
		iv)	Obtain Q-value of given nuclear reaction & Identify its types. $_7 N^{14} (\alpha, p)_8 O^{17}$ in MeV Given: mass of helium = 4.0026 a.m.u. Mass of $_7 N^{14} = 14.0031$ a.m.u. Mass of $_8 O^{17} = 16.9991$ a.m.u. Mass of proton = 1.0078 a.m.u. & 1 a.m.u. = 931.5 MeV.	21/2

Either:

- **4.** a) i) Describe the principle, construction & working of Geiger-Muller counter. Explain **5** quenching in G.M. Counter.
 - ii) Show that the length of cylindrical electrode in linear accelerator is proportional to 3 square root of the no. of that electrode.
 - iii) The dead time of G.M. Counter is 400µs. What is the true counting rate for measured counting rate 110 counts per minute?

OR

b)	i)	Explain construction & working of scintillation counter.	21/2
	ii)	Explain Van-de Graaf generator	21/2
	iii)	Describe the construction & working of cyclotron.	21/2
	iv)	If the frequency of oscillator potential applied to the dee's of the cyclotron is 9MHz. What must be magnetic flux density B to accelerate the alpha particles? (Given: mass of alpha particle = 6.643×10^{-27} kg,	
		charge of α - particle = 3.204×10 ⁻¹⁹ C)	

Solve any ten questions of the following.						
a)	Write constituents of nucleus.	1				
b)	What is Bohr Magneton?	1				
c)	Find the packing fraction of ${}_{30}$ Zn ⁶⁴ , whose mass is 63.9291 a.m.u.	1				
d)	What are the conditions of nuclear stability?	1				
e)	What is the basic point of difference between the liquid drop model & shell model of the nucleus?	1				
f)	State limitations of liquid drop model.	1				
g)	Define cross-section of nuclear reaction.	1				
h)	What is nuclear reaction?	1				
i)	What is Cherenkov radiation?	1				
j)	Define Dead time.	1				
k)	State the principle of propositional counter.	1				
1)	What are the limitations of cyclotron?	1				

5.