B.Sc. T.Y. (CBCS Pattern) Semester - VI USDSEPHT13 - Physics Paper-I : Nuclear and Particle Physics

P. Pages : 3 Time : Three Hours			ours * 1 9 1 1 * GUG/S/23/13 Max. Marks	GUG/S/23/13365 Max. Marks : 50	
	Note	es :	 All questions are compulsory. Draw neat labelled diagram wherever necessary. 		
	Eith	ner:			
1.	a)	i)	Define mass defect and packing fraction.	2	
		ii)	Explain the concept of Nuclear magnetic dipole moment. What is nuclear magneton?	3	
		iii)	Discuss electric quadrupole moment of nucleus.	3	
		iv)	Find the nuclear radius of $_{30}$ Zn ⁶⁴ (Given R ₀ = 1.2×10 ⁻¹⁵ m)	2	
			OR		
	b)	a)	Discuss magnetic moment of an atom. What is Bohr's magneton.	21/2	
		b)	Prove that nuclear density is same for all nucleus.	21/2	
		c)	Discuss various properties of nucleus.	21/2	
		d)	Calculate the ratio of nuclear radius of lead ${}_{82}Pb^{204}$ and silver isotope ${}_{47}Ag^{107}$.	21/2	
	Eith	ner:			
2.	a)	i)	Give the main assumption's of shell model and liquid drop model.	4	
		ii)	Explain Fermi gas model.	2	
		iii)	Discuss the concept of nuclear stability.	2	
		iv)	Explain the concept of nuclear force.	2	
			OR		
	b)	a)	How does the shell model explains the existence of magic number 2, 8, 20 & 28 only.	21/2	
		b)	Derive the expression for binding energy of nucleus, based on liquid drop model.	21/2	
		c)	Explain the concept of two nucleon separation energy.	21/2	
		d)	Find ground state spin for ${}_{21}$ Sc ⁴⁵ using shell model.	21/2	

Either:

3.	a)	i)	What is nuclear reaction? Explain various types of nuclear reactions.	3			
		ii)	Discuss various conservation laws in nuclear reactions.	2			
		iii)	Derive an expression for Q-value of the reaction X (a, b) Y in terms of kinetic energy.	3			
		iv)	The Q-value of Na ²³ (n, α) F ²⁰ reaction is – 5.4 MeV. Determine the threshold energy of this reaction. Given : Mass of Neutron = 1.00866 a.m.u2 Mass of Na ²³ = 22.9909 a.m.u.	2			
			OR				
	b)	a)	Explain the terms Range and Straggling of a charged particle.	21/2			
		b)	Explain the interaction of neutron's with matter.	21/2			
		c)	Discuss the interaction of gamma ray with matter.	21/2			
		d)	Show that the reaction $\text{Li}^7(\mathbf{p}, \alpha) \text{He}^4$ is Exothermic. Given:	21/2			
			Atomic mass of $_{1}H^{1} = 1.00814 \text{ a.m.u.}, _{2}He^{4} = 4.00260 \text{ a.m.u.}, _{3}Li^{\prime} = 7.01822 \text{ a.m.u.}.$				
	Eith	er:					
4.	a)	i)	Discuss the variation of ionization current with applied voltage due to passage of charged particles through the ionization detector.	3			
		ii)	Describe construction and working of GM Counter.	3			
		iii)	Explain working of photomultiplier.	2			
		iv)	If the frequency of oscillator potential applied to the dees of the cyclotron is 9 MHz. What must be the magnetic flux density to accelerate the α -particles?	2			
			Given : Mass of α – particle = 6.643×10 ⁻²⁷ kg				
			Charge on α – particle = 3.204×10 ⁻¹⁹ C				
	OR						
	b)	a)	Explain construction and working of linear accelerator.	21/2			
		b)	Derive the resonance condition of cyclotron? What are limitations of cyclotron?	21/2			
		c)	Describe the working of Van-De-Graft Generator.	21/2			
		d)	What would be the length of last drift tube in a linear accelerator which produces	21/2			

d) What would be the length of last drift tube in a linear accelerator which produces $2\frac{1}{2}$ energy 120 MeV C¹² ions, using frequency of 70 MHz. Given : $1eV = 1.6 \times 10^{-19}$ J, $1amu = 1.66 \times 10^{-27}$ kg

Attempt any ten questions from followings carries 1 mark.						
a)	Define atomic mass unit.	1				
b)	Write the formula for Nuclear Magneton.	1				
c)	What is the energy equivalent of 1 a.m.u.	1				
d)	Why do the protons in the nucleus not fly apart?	1				
e)	What do you mean by charge independence of nuclear force?	1				
f)	What are the limitations of liquid drop model?	1				
g)	Write Neil's – Bohr's formula.	1				
h)	What is Endoergic and Exoergic reaction?	1				
i)	Define the term nuclear reaction cross section.	1				
j)	State the limitations of linear accelerator.	1				
k)	What is mean by threshold voltage in GM tube?	1				
l)	Write the principle of ionization chamber.	1				

5.