021C - Mathematics Paper-I (DSE-V) : Numerical Methods

P. Pages : 2

GUG/W/23/13363
Time : Three Hours

Notes: 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) Find the real positive root of the equation $3 x-\cos x-1=0$, by the Newton-Raphson
$2 x-y+3 z=9,3 x+2 y+z=3, x+y-z=-2$.
d) Use Gauss-Jordan method to solve the system.

$$
3 x-y+9 z=12, x+2 y+3 z=4,2 x-2 y-z=1
$$

UNIT - II

2. a) Express the polynomial $f(x)=3 x^{2}-5 x+7$ into factorial polynomial and obtain their forward differences.
b) Let $y=f(x)$ be a polynomial of degree two. Compute y_{5} from the value.
x: 123
y: 1613

OR

c) Use Newton-Gregory forward interpolation formula to find a cubic polynomial from the data:
x: $\begin{array}{llllll}0 & 1 & 2 & 3 & 4\end{array}$
y: $7 \quad 10 \quad 13 \quad 22 \quad 43$
d) Using Lagrange interpolation formula, express
$\frac{3 x^{2}-8 x+13}{(x+1)(x-2)(x-3)}$ as sum of partial fractions.
UNIT - III
3. a) Find the values of the derivatives $y^{\prime}(x)$ at $x=1.2$ from the following data:

$$
\begin{array}{cccccccc}
\mathrm{x}: & 1.0 & 1.2 & 1.4 & 1.6 & 1.8 & 2.0 & 2.2 \\
\mathrm{y}: & 2.7 & 3.4 & 4.1 & 5.2 & 6.3 & 7.6 & 8.9
\end{array}
$$

b) The distance covered by an athlete for the 40 meters is given by the following values:
s (distance): $\begin{array}{lllllll}0 & 4 & 11 & 19 & 28 & 40\end{array}$
Find the speed of the athlete at $\mathrm{t}=4.8 \mathrm{sec}$.

OR

c) From the values of x and y :
$\mathrm{x}: \begin{array}{llllll}-2 & -1 & 0 & 2 & 3\end{array}$
$\mathrm{y}(\mathrm{x}): \begin{array}{lllll}57 & 13 & 7 & -11 & -23\end{array}$
Find $y^{\prime}(x)$ at $x=1$ by using Newton dividend difference formula of derivatives.
d) Discuss maxima and minima of the function $y=f(x)$ specified by the values:

$x:$	-2	0	2	4
$y=f(x):$	-1	1	3	53

UNIT - IV

4. a) Evaluate the integral $\int_{0}^{6} \frac{d x}{1+x}$ by the Simpson's one-third rule.
b) Evaluate the integral $\int_{0.1}^{0.2} \frac{\mathrm{x}^{2}}{1+\mathrm{x}^{3}} \mathrm{dx}$ by the trapezoidal rule.

OR

c) Evaluate the integral $\int_{0}^{4} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$ by Boole's rule.
d) Evaluate the integral $\int_{0}^{3} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$ by Simpson three-eighth rule.
5. Solve any six.
a) Define a triangular factorization.
b) Show that the Newton-Raphson iteration for determining a square root of A has the form.
$\mathrm{x}_{\mathrm{n}+1}=\frac{1}{2}\left(\mathrm{x}_{\mathrm{n}}+\frac{\mathrm{A}}{\mathrm{x}_{\mathrm{n}}}\right)$
c) Prove that $\mathrm{E}=1+\Delta$
d) If h is the interval of differencing, then prove that $E=e^{h D}$
e) Write the Newton general forward difference formula for first derivatives.
f) Write the Newton divided difference formula for first derivatives.
g) Define a truncation error.
h) Define a degree of precision.

