021C - DSE-V : Mathematics-I : Numerical Methods

P. Pages: 3

GUG/S/23/13363
Time : Three Hours
$\begin{array}{ll}1 & 9 \\ \star & 9\end{array}$
Max. Marks : 60

Notes: 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) Use the Bisection method to find the negative root of $x^{3}-4 x+8=0$ to the four decimal places.
b) Prove that the rate of convergence of the $\mathrm{N}-\mathrm{R}$ method is 2 and is given by

$$
\left|\mathrm{e}_{\mathrm{n}+1}\right|=\left|-\frac{\mathrm{f}^{\prime \prime}(\mathrm{r})}{2 \mathrm{f}^{\prime}(\mathrm{r})}\right|\left|\mathrm{e}_{\mathrm{n}}\right|^{2}
$$

Where r is the exact root of the equation $f(x)=0$

OR

c) Solve the system of equations
$0 x_{1}+2 x_{2}-3 x_{3}=1,3 x_{1}-x_{2}+x_{3}=8,2 x_{1}+x_{2}-2 x_{3}=6$
by the Gauss elimination method with partial pivoting.
d) Obtained the triangular factorization of the matrix.

$$
A=\left[\begin{array}{ccc}
2 & 0 & 1 \\
-1 & 3 & 1 \\
1 & -1 & 2
\end{array}\right]
$$

UNIT - II
2. a) Let $y=f(x)$ be a polynomial of degree three. The following data gives entries y_{0} to y_{3} :

x	0	1	2	3	4	5
y	1	-1	3	25	-	-

Find the next two entries i. e. y_{4} and y_{5}
b) Show that
$\mu \delta=\frac{1}{2} \Delta \mathrm{E}^{-1}+\frac{1}{2} \Delta$

OR

c) Using Newton-Gregory forward interpolation formula, estimate the value of $\sin 52$ from
the following data

x	45	50	55	60
$\mathrm{y}=\sin \mathrm{x}$	0.7071	0.7660	0.8192	0.8660

[^0]d) Using Lagrange interpolation formula, find the missing value from the following data:

x	0	1	3	4	7
y	2	-1	-1	-	23

UNIT - III

3. a) Find the first derivative of the function $f(x)$ at $x=1$ from the give data:

x	0	1	2	3	4	5
y	2	9	28	65	126	217

b) The following data gives the velocity of a particle for 20 seconds at an interval of 5
seconds.

t	0	5	10	15	20
v	0	10	70	180	340

Find the acceleration at $\mathrm{t}=0$.

OR

c) Find $y^{\prime}(3)$ from the Lagrange interpolation formula for the function given by the values:

x	3	5	7	9
y	5	8	12	17

d) Find the maxima and minima of the function $y=f(x)$ specified by the values:

$\mathrm{x}:$	-1	0	1	3	4
$\mathrm{y}: \mathrm{f}(\mathrm{x})$	-4	3	-4	12	131

UNIT - IV

4. a) Derive the trapezoidal rule from Lagrange form of Newton-Cotes formula.
b) Evaluate the integral $\int_{0}^{2} \mathrm{e}^{\mathrm{x}^{2}} \mathrm{dx}$ by Simpsons one-third rule.

OR

c) Evaluate the integral $\int_{0}^{3} \frac{\mathrm{dx}}{1+\mathrm{x}^{3}}$ by Simpson three-eighth quadrature formula.
d) Prove that the trapezoidal rule has degree of precision one.
5. Solve any six.
a) Show that the Newton-Raphson iteration for determining a k th root of A is

$$
\mathrm{x}_{\mathrm{n}+1}=\frac{1}{\mathrm{k}}\left[(\mathrm{k}-1) \mathrm{x}_{\mathrm{n}}+\frac{\mathrm{A}}{\mathrm{x}_{\mathrm{n}}^{\mathrm{k}-1}}\right], \mathrm{n}=0,1,2 \ldots
$$

b) Define upper and lower triangular matrix.
c) Define a factorial polynomial.
d) Prove that $\delta=\mathrm{E}^{\frac{1}{2}}-\mathrm{E}^{-\frac{1}{2}}$.
e) Write the special Newton backward formula for first derivatives at tabular Points near $\mathrm{x}=\mathrm{x}_{\mathrm{n}}$.
f) Write the Newton divided difference formula for second derivatives.
g) Evaluate the integral $\int_{0}^{6} \frac{\mathrm{dx}}{1+\mathrm{x}}$ by the trapezoidal rule.
h) Define an error constant.

[^0]: Where the angles x are measured in degrees.

