B.Sc-III. (CBCS Pattern) Semester - VI 021C - DSE-V : Mathematics-I : Numerical Methods

P. Pages: 3

Time : Three Hours

* 1 9 0 9 *

GUG/S/23/13363

Max. Marks: 60

Notes : 1. Solve all **five** questions.

2. All questions carry equal marks.

UNIT – I

- 1. a) Use the Bisection method to find the negative root of $x^3 4x + 8 = 0$ to the four decimal places. 6
 - b) Prove that the rate of convergence of the N-R method is 2 and is given by

$$|\mathbf{e}_{n+1}| = \left| -\frac{f''(r)}{2f'(r)} \right| |\mathbf{e}_n|^2$$

Where r is the exact root of the equation f(x) = 0

OR

- c) Solve the system of equations $0x_1 + 2x_2 - 3x_3 = 1, 3x_1 - x_2 + x_3 = 8, 2x_1 + x_2 - 2x_3 = 6$ by the Gauss elimination method with partial pivoting.
- d) Obtained the triangular factorization of the matrix.

$\mathbf{A} = \begin{bmatrix} 2 & 0 & 1 \\ -1 & 3 & 1 \\ 1 & -1 & 2 \end{bmatrix}$

UNIT – II

2. a) Let y = f(x) be a polynomial of degree three. The following data gives entries y_0 to y_3 : 6

	Х	0	1	2	3	4	5			
	у	1	-1	3	25	-	-			
Find the next two entries i. e. y_4 and y_5										

b) Show that

$$\mu \delta = \frac{1}{2} \Delta E^{-1} + \frac{1}{2} \Delta$$

OR

 c) Using Newton-Gregory forward interpolation formula, estimate the value of sin52 from 6 the following data

1

х	45	50	55	60		
y=sinx 0.7071 0.7660 0.8192 0.86						

Where the angles x are measured in degrees.

6

6

6

d) Using Lagrange interpolation formula, find the missing value from the following data:
x 0 1 3 4 7
y 2 -1 -1 - 23

UNIT – III

6

6

6

2

2

3. a) Find the first derivative of the function f(x) at x = 1 from the give data:

Х	0	1	2	3	4	5
у	2	9	28	65	126	217

b) The following data gives the velocity of a particle for 20 seconds at an interval of 5 **6** seconds.

t 0 5 10 15 20							
v 0 10 70 180 340							
Find the acceleration at $t = 0$							

Find the acceleration at t = 0.

OR

c) Find y'(3) from the Lagrange interpolation formula for the function given by the values: 6 x 3 5 7 9

y 5 8 12 17	11	5	2	,	
	у	5	8	12	17

d) Find the maxima and minima of the function y = f(x) specified by the values: 6

x:	-1	0	1	3	4
y:f(x)	-4	3	-4	12	131

UNIT – IV

4.	a)	Derive the trapezoidal rule from Lagrange form of Newton-Cotes formula.			
	b)	Evaluate the integral $\int_0^2 e^{x^2} dx$ by Simpsons one-third rule.	6		

OR

- c) Evaluate the integral $\int_0^3 \frac{dx}{1+x^3}$ by Simpson three-eighth quadrature formula. 6
- d) Prove that the trapezoidal rule has degree of precision one.
- 5. Solve any six.
 - a) Show that the Newton-Raphson iteration for determining a k th root of A is $x_{n+1} = \frac{1}{k} \left[(k-1)x_n + \frac{A}{x_n^{k-1}} \right], n = 0, 1, 2...$
 - b) Define upper and lower triangular matrix.

c) Define a factorial polynomial.

d) Prove that
$$\delta = E^{\frac{1}{2}} - E^{-\frac{1}{2}}$$
.

2

2

2

2

- e) Write the special Newton backward formula for first derivatives at tabular Points near $x = x_n$.
- f) Write the Newton divided difference formula for second derivatives.

g) Evaluate the integral
$$\int_0^6 \frac{dx}{1+x}$$
 by the trapezoidal rule.

h) Define an error constant.
