Notes: 1. Solve all the questions.
2. All questions carry equal marks.

UNIT - I

1. a) If $f=a_{r s} x^{r} x^{s}$ then show that:
$\frac{\partial f}{\partial x^{r}}=\left(a_{r s}+a_{s r}\right) x^{s} \& \frac{\partial^{2} f}{\partial x^{r} \partial x^{s}}=a_{r s}+a_{s r}$
b) A covariant vector has component $2 x-z, x^{2} y$, $y z$ in rectangular coordinates. Find its covariant components in cylindrical coordinates.

OR

c) Define the inner product. If $A^{m}, B_{\text {nrs }}$ are tensor then show that $A^{m} B_{m r s}$ is also a tensor.
d) Show that $\delta_{\mathrm{s}}^{\mathrm{r}}$ is a mixed tensor of order two.

Let $\mathrm{A}_{\mathrm{rst}}^{\mathrm{pq}}$ be a tensor. Choosing $\mathrm{p}=\mathrm{t}, \mathrm{q}=\mathrm{s}$ show that $\mathrm{A}_{\mathrm{rqp}}^{\mathrm{pq}}$ is also a tensor. What is its rank?

UNIT - II

2. a) Show that $\Gamma_{\mathrm{mn}}^{\mathrm{m}}=(\log \sqrt{\mathrm{g}})$, , for $\mathrm{g}<0$.
b) Find the nonvanishing components of Christoffel symbols of second kind for
$\mathrm{ds}^{2}=\mathrm{dr}^{2}+\mathrm{r}^{2} \mathrm{~d} \theta^{2}+\mathrm{r}^{2} \sin ^{2} \theta \mathrm{~d} \phi^{2}$

OR

c) Show that under a linear transformation of a coordinate system $x^{m}=a_{n}^{m} x^{\prime n}+b^{m}, a_{n}^{m}, b^{m}$ are constants, the Christoffel symbols are tensors.
d) Show that the covariant derivative of a scalar is its partial derivative.

UNIT - III

3. a) Derive the expression for force in the transverse \& longitudinal mass.
b) Obtain the mass energy equivalence $\mathrm{E}=\mathrm{mc}^{2}$.

OR

c) Prove that the four velocity, in component form can be expressed as
$u^{i}=\left(\frac{\bar{u}}{c \sqrt{1-u^{2} / c^{2}}}, \frac{1}{\sqrt{1-u^{2} / c^{2}}}\right)$.
Where $\overline{\mathrm{u}}=\left(\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}, \mathrm{u}_{\mathrm{z}}\right)$ is ordinary 3 dimensional velocity of the particle.
d) Show that $\mathrm{P}^{2}-\mathrm{E}^{2} / \mathrm{C}^{2}$ is an invariant whose numerical value is $\mathrm{m}_{0}^{2} \mathrm{c}^{2}$.

UNIT - IV

4. a) Write the expression for the scalar \& vector potential, Express these equation in component form.
b) Show that the Hamiltonian for a charged particle moving in an electromagnetic fields is

$$
H=\left[m_{0}^{2} C^{4}+C^{2}\left(P-\frac{e}{C} A\right)^{2}\right]^{\frac{1}{2}}+e \phi
$$

OR

c) Obtain the matrix f_{ij} in electromagnetic field tensor.
d) Show that
i) $\mathrm{Ey}^{\prime}=\alpha\left(\mathrm{Ey}-\frac{v}{\mathrm{C}} \mathrm{Hz}\right) \&$
ii) $\quad \mathrm{Ez}^{\prime}=\alpha\left(\mathrm{Ez}+\frac{v}{\mathrm{C}} \mathrm{Hy}\right)$
5. Solve any six.
a) Define Kronecker delta.
b) Define symmetric \& Skew symmetric tensor.
c) Show that $[\mathrm{mn}, \mathrm{r}]=[\mathrm{nm}, \mathrm{r}]$.
d) Show that $\mathrm{g}_{\mathrm{mn}}, \mathrm{r}=0$.
e) Prove that $g_{i j} u^{i} u^{j}=1$.
f) Show that $\frac{d E}{d p}=u$
g) Write the component form of $\operatorname{cur} \ell \overline{\mathrm{H}}=\frac{1}{\mathrm{C}} \frac{\partial \overline{\mathrm{E}}}{\partial \mathrm{t}}$.
h) Show that $\mathrm{E}^{-1}=\overline{\mathrm{E}}$.

