B.Sc.-III CBCS Pattern Semester-VI 021C - Mathematics Paper-IV (DSE-VIII) : Special Relativity-II

P. Pages : 2 Time : Three Hours			S * 6 7 5 8 *	GUG/W/23/13362 Max. Marks : 60	
	Note	es: 1. 2.	Solve all the questions. Each question carry equal marks.		
			UNIT – I		
1.	a)		hat any covariant tensor of the second order may be expressed as the tric & skew symmetric tensor.	te sum of 6	
	b)	Show t	hat if A^m , Bnrs are tensors then A^m Bmrs is also a tensor.	6	
			OR		
	c)	Show t	hat $\frac{dg}{g} = g^{mn} dg_{mn} = -g_{mn} dg^{mn}$	6	
	d)		hat an element of volume $g^{\frac{1}{2}}dx^{1}dx^{2} dx^{N}$ is invariant.	6	
			UNIT – II		
2.	a)	Show t	hat $g_r^{mn} = -g^{ms} \overline{ sr^n} - g^{sn} \overline{ sr^m}$.	6	
	b)	-	te the nonvanishing Christoffel symbols of second kind for $hr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2$	6	
			OR		
	c)	Prove t	hat $\frac{\delta A}{\delta u} = \frac{dA}{du}$ for a scalar A.	6	
	d)		hat under a linear transformation of a coordinate system $_{n}^{m} x'^{n} + b^{m}, a_{n}^{m}, b^{m}$ are constants, the Christoffel symbols are tenso	6 ors.	
			LINIT – III		

UNIT – III

3.	a)	Obtain the transformation equations for mass.	
	b)	Obtain the transverse & longitudinal mass.	6

OR

	c)	A particle is given a kinetic energy equal to n times its rest energy $m_0 C^2$ what are its speed & momentum?		
	d)	Find the expression for four velocity in component form.		
		$\mathbf{UNIT} - \mathbf{IV}$		
4.	a)	Obtain wave equation for propagation of magnetic field strength.	6	
	b)	Obtain expression for transformation of charge density.		
		OR		
	c)	Show that the energy momentum tensor of electromagnetic field is trace free.		
	d)	Prove that: $\overline{E}' \cdot \overline{H}' = \overline{E} \cdot \overline{H} \& E'^2 - H'^2 = E^2 - H^2$.	6	
5.		Solve any six:		
		a) Define the inner product of tensors.	2	
		b) Define the contraction of tensor.	2	
		c) define Christoffel symbols.	2	
		d) Show that $\delta_{n;r}^m = 0$	2	
		e) Show that $P^2 - E^2 / C^2 = -m_0^2 C^2$	2	
		f) Define the four force.	2	
		g) State the Lorentz gauge condition.	2	
		h) Define the electromagnetic field tensor Fij.	2	
