021A - Mathematics-II - DSE-VI : Complex Analysis and Vector Calculus

P. Pages : 2

GUG/S/23/13361
Time : Three Hours
Max. Marks : 60

Notes : 1. Solve all the questions.
2. Each questions carry equal marks.

UNIT - I

1. a) Obtain the Cauchy - Riemann equations in polar form.
b) Show that $w=e^{\bar{z}}$ is not analytic for any z .

OR

c) Show that $u=x^{3}-3 x y^{2}$ is harmonic \& find the corresponding analytic function.
d) Prove that every bilinear transformation with a single noninfinite fixed point α can be put in the normal form $\frac{1}{w-\alpha}=\frac{1}{z-\alpha}+k, k \rightarrow$ constant

UNIT - II

2. a) Evaluate $\int_{c}\left(z-z^{2}\right) d z$, where c is the upper half of the circle $|z|=1$.
b) If a function $f(z)$ is analytic in a simply connected domain D then show that $\int_{c} f(z) d z=0$, for every simple closed curve C in D

OR

c) Evaluate $\int_{c} \frac{15 z+9}{z\left(z^{2}-9\right)} d z$, where c is the circle $|z-1|=3$
d) Using Cauchy's formula evaluate $\int_{c} \frac{\cos \pi z}{z^{2}-1} d z$ around a rectangle with vertices $2 \pm \mathrm{i},-2 \pm \mathrm{i}$

UNIT - III

3. a)

If $\bar{A}=\left(2 x^{2} y-x^{4}\right) \bar{i}+\left(e^{x y}-y \sin x\right) \bar{j}+x^{2} \cos y \bar{k}$ then show that $\frac{\partial^{2} \bar{A}}{\partial y \partial x}=\frac{\partial^{2} \bar{A}}{\partial x \partial y}$
b) Prove that:
i) $\overline{\mathrm{a}} \cdot \nabla \overline{\mathrm{r}}=\overline{\mathrm{a}}$
ii) $\nabla \phi=\frac{-\overline{\mathrm{r}}}{\mathrm{r}^{3}}$ for $\phi=\frac{1}{\mathrm{r}}$

OR

c) Evaluate $\int_{\mathrm{C}} \overline{\mathrm{F}} \cdot \mathrm{d} \overline{\mathrm{r}}$ from $(0,0,0)$ to $(1,1,1)$ along the straight line joining $(0,0,0) \&(1,1,1)$ when $\overline{\mathrm{F}}=\left(3 x^{2}+6 y\right) \overline{\mathrm{i}}-14 y z \overline{\mathrm{j}}+20 x z^{2} \overline{\mathrm{k}}$.
d) If $\overline{\mathrm{F}}=\left(2 \mathrm{x}+\mathrm{y}^{2}\right) \overline{\mathrm{i}}+(3 \mathrm{y}-4 \mathrm{x}) \overline{\mathrm{j}}$, evaluate $\int_{\mathrm{c}} \overline{\mathrm{F}} \cdot \mathrm{d} \overline{\mathrm{r}}$ around the path, parabolic are $\mathrm{y}=\mathrm{x}^{2}$ joining $(0,0)$ to $(1,1)$

UNIT - IV

4. a) Verify the Green's theorem in the plane $\int_{c}\left(x y+y^{2}\right) d x+x^{2} d y$ where C is the closed curve bounded by $y=x \& y=x^{2}$
b) Show that $\iint_{\mathrm{s}}(\mathrm{ax} \overline{\mathrm{i}}+\mathrm{by} \overline{\mathrm{j}}+\mathrm{cz} \overline{\mathrm{k}}) \cdot \mathrm{nds}=\frac{4}{3} \pi(\mathrm{a}+\mathrm{b}+\mathrm{c})$ where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=1$

OR

c) Apply Stoke's theorem to evaluate $\oint_{c}(y d x+z d y+x d z)$, where C is the curve of intersection of $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=\mathrm{a}^{2} \& \mathrm{x}+\mathrm{z}=\mathrm{a}$
d) State \& prove the divergence theorem.
5. Solve any six.
a) Show that $f(z)=x y+i y$ is not analytic
b) Define harmonic \& conjugate functions.
c) Prove that $\int_{c} \frac{d z}{z-a}=2 \pi i$, where $C:|z-a|=r$
d) State Cauchy's integral formula.
e) If $\mathrm{f} \& \mathrm{~g}$ are irrotational, show that $\overline{\mathrm{f}} \times \overline{\mathrm{g}}$ is solenoidal.
f) Define the divergence and curl of vector.
g) State the Green's theorem.
h) State Stokes theorem.

