B.Sc. Second Year CBCS Pattern Semester-IV

USPHT07 - Physics Paper-I: Waves, Acoustic & Laser

P. Pages: 3 Time: Three Hours				GUG/W/23/12016 Max. Marks : 50	
			1 1		
		Eit	ther:		
1.	a)	i)	What are beats?		1
		ii)	Derive an expression for the resultant motion of the particle, when harmonic motions having slightly different frequencies and are in same the same line.		3
		iii)	Find the resultant of two simple harmonic motion at right angles to each period in the ratio 1:1, different amplitudes and phase difference of O or between them.		5
		iv)	Calculate the number of beats heard per second if there are two sources frequencies 400 Hz and 402 Hz at equal intensity sounded together.	of sound of	1
			OR		
	b)	a)	What are Lissajous's figures? Explain the formation of Lissajous's figure	res by CRO.	21/2
		b)	Derive an expression for the resultant at superposition of two perpendic oscillations with 1:2 frequency ratio.	ular harmonic	21/2
		c)	Explain the applications of Lissajous's figures to determine unknown fr	equency.	21/2
		d)	Explain Graphically the resultant of two S.H.M. of same frequency a angle to each other with a phase difference of $\pi/2$.	acting at right	21/2
		Eit	ther:		
2.	a)	i)	Define the term phase velocity and group velocity. Derive the relation be two. Does the group velocity is always less than the phase velocity.	etween the	4
		ii)	Derive an expression for velocity of transverse waves along a stretched	string.	4
		iii)	A stretched string with a tension of one Newton has 0.2 gm mass/cm ler velocity of the waves in it.	ngth. Find the	2
			OR		
	b)	a)	Evaluate the various co-efficient in Fourier Series.		21/2
		b)	Using Fourier theorem analyze a saw toothed wave.		21/2

		c)	Find the Fourier Series to represent $f(x) = x , -\pi < x < \pi$.	21/2
		d)	State the limitations of Fourier Theorem.	21/2
		Eitl	ner:	
3.	a)	i)	What are ultrasonic waves. How are they can be detected?	3
		ii)	State Piezoelectric effect. Explain the production of Ultrasonic waves using piezoelectric effect.	4
		iii)	Calculate the fundamental frequency of Ultrasonics produced by quartz crystal of thickness 0.5 mm. The value of Young's modulus for quartz is $8\times10''$ dyne/cm ² and density $2.65\mathrm{gm/cm^3}$.	3
			OR	
	b)	a)	Deduce Sabine's formula for reverberation time.	21/2
		b)	What are the characteristics of good auditorium.	21/2
		c)	The volume of the hall is $45,000\mathrm{m}^3$ having reverberation time 1.5 sec. What is the total absorbing power of the surfaces in the hall, if the area of the sound absorbing surface is $8,000\mathrm{m}^2$. Calculate the average absorption coefficient.	21/2
		d)	Explain the characteristics of Musical Sound.	21/2
		Eitl	ner:	
4.	a)	i)	Explain construction and working of He – Ne Laser.	4
		ii)	Explain the difference between spontaneous and stimulated emission.	3
		iii)	A perfectly monochromatic continuous laser beam chopped into 0.1 ns pulses using short shutter. Calculate the coherence length and bandwith.	3
			OR	
	b)	a)	Explain the working of Ruby Laser.	21/2
		b)	State the characteristics of Laser beam.	21/2
		c)	Explain in brief the term optical pumping and population inversion.	21/2
		d)	What do you mean by coherence? Discuss temporal coherence and spatial coherence.	21/2

5.	Solve	anv 1	ten of	the	following.
J.	DOLVE	any t		uic	ionowing.

a)	Define simple harmonic motion.	1
b)	State the principle of superposition of two waves.	1
c)	What are the applications of beats?	1
d)	Define 'Standing wave'.	1
e)	Define progressive wave and state its equation.	1
f)	What is Bel and Decibel?	1
g)	Define Intensity and fondness of sound.	1
h)	State the difference between Noise and Music.	1
i)	What are node and antinode in standing wave.	1
j)	State the applications of Laser.	1
k)	What is the characteristics of LASER beam?	1
1)	What is metastable state?	1
