# B.Sc.-II (CBCS Pattern) Semester - IV <br> USMT-08 - Mathematics-II Paper- VIII (Elementary Number Theory) <br> P. Pages : 2 <br> Max. Marks : 60 

Notes: 1. Solve all five questions.
2. All questions carry equal marks.

## UNIT - I

1. a) Let $a$ and $b$ be integers such that $b>0$. Then prove that there are unique integers $q$ and $r$ such that $\mathrm{a}=\mathrm{bq}+\mathrm{r}$ with $0 \leq \mathrm{r}<\mathrm{b}$.
b) Prove that the product of any m consecutive integers is divisible by m !.

## OR

c) Using the Euclidean algorithm, find the gcd d of the numbers 1109 and 4999 and then find integers x and y to satisfy $\mathrm{d}=1109 \mathrm{x}+4999 \mathrm{y}$.
d) If $c$ is any common multiple of $a$ and $b$. Then prove that $[a, b] \mid c$

## UNIT - II

2. a) Prove that every positive integer greater than one has at least one prime divisor.
b) Show that if m is a composite integer, then prove that $\underbrace{\stackrel{11 \cdots 11}{\leftrightarrows}}_{\mathrm{m} \text { term }}$ is a composite integer.

## OR

c) Prove that any two distinct Fermat number are relatively prime i.e.
$\left(\mathrm{f}_{\mathrm{m}}, \mathrm{F}_{\mathrm{n}}\right)=1$.
d) Prove that Diophantine equation
$\mathrm{ax}+\mathrm{by}=\mathrm{c}$ has a solution iff $\mathrm{d} / \mathrm{c}$, where $\mathrm{d}=(\mathrm{a}, \mathrm{b})$.

## UNIT - III

3. a) Show that if $\mathrm{a} \equiv 1\left(\bmod \mathrm{p}^{\mathrm{n}}\right)$, then $\mathrm{a}^{\mathrm{p}} \equiv 1\left(\bmod \mathrm{p}^{\mathrm{n}+1}\right)$, where n is a positive integer and p is a prime number.
b) If $r_{1}, r_{2}, \ldots, r_{m}$ is a complete system of residues modulo $m$ and $(a, m)=1$, a is a positive integer, then prove that
$\mathrm{ar}_{1}+\mathrm{b}, \mathrm{ar}_{2}+\mathrm{b} . \ldots, \mathrm{ar}_{\mathrm{m}}+\mathrm{b}$
is also complete system of residues modulo m .

## OR

c) Show that the system of congruences
$\mathrm{x} \equiv \mathrm{a}(\bmod \mathrm{m}), \mathrm{x} \equiv \mathrm{b}(\bmod \mathrm{n})$ has a solution iff $(\mathrm{m}, \mathrm{n}) \mid(\mathrm{a}-\mathrm{b})$.
d) Solve the congruence $140 x \equiv 133(\bmod 301)$.

## UNIT - IV

4. a) Let $n=p_{1}{ }^{a_{1}} p_{2}^{a_{2}} \ldots . . p_{m}{ }^{a_{m}}$ be the prime-power factorization of the positive integer $n$.

Then prove that

$$
\phi(\mathrm{n})=\mathrm{n}\left(1-\frac{1}{\mathrm{p}_{1}}\right)\left(1-\frac{1}{\mathrm{p}_{2}}\right) \cdots\left(1-\frac{1}{\mathrm{p}_{\mathrm{m}}}\right) .
$$

b) Solve the linear congruence.
$3 \mathrm{x} \equiv 5(\bmod 16)$ by suing Euler's theorem.

## OR

c) Let F and f be two arithmetic functions such that

$$
\mathrm{F}(\mathrm{n})=\sum_{\mathrm{d} / \mathrm{n}} \mathrm{f}(\mathrm{~d})
$$

Then prove that $\mathrm{f}(\mathrm{n})=\sum_{\mathrm{d} / \mathrm{n}} \mu(\mathrm{d}) \mathrm{F}(\mathrm{n} / \mathrm{d})=\sum_{\mathrm{d} / \mathrm{n}} \mu(\mathrm{n} / \mathrm{d}) \mathrm{F}(\mathrm{d})$
d) Show that the integer solution of $x^{2}+2 y^{2}=z^{2}$ with ( $x, y, z$ ) $=1$ can be expressed as $\mathrm{x}= \pm\left(2 \mathrm{a}^{2}-\mathrm{b}^{2}\right), \mathrm{y}=2 \mathrm{ab}, \mathrm{z}=2 \mathrm{a}^{2}+\mathrm{b}^{2}$

## 5. Solve any six.

a) Prove that $\mathrm{n}^{3}-\mathrm{n}$ is divisible by 6 .
b) Prove that there are infinitely many pairs of integers $x$ and $y$ satisfying $x+y=100$ and $(\mathrm{x}, \mathrm{y})=5$.
c) Define a Fermat numbers.
d) Prove that
e) Define a linear congruence.
f) State the Chinese remainder theorem.
g) If p is prime and $\mathrm{p} \backslash$ a, then show that $\mathrm{a}^{\mathrm{p}-1} \equiv 1(\bmod \mathrm{p})$.
h) Define the Mobius $\mu$ function.

