B.Sc.-II (CBCS Pattern) Semester - IV USMT-08 - Mathematics-II Paper- VIII (Elementary Number Theory)

P. Pages: 2

Time : Three Hours

GUG/S/23/12015

Max. Marks: 60

6

6

6

6

Notes : 1. Solve **all five** questions.

2. All questions carry equal marks.

UNIT - I

- 1. a) Let a and b be integers such that b>0. Then prove that there are unique integers q and r such that a = bq + r with $0 \le r < b$.
 - b) Prove that the product of any m consecutive integers is divisible by m!.

OR

- c) Using the Euclidean algorithm, find the gcd d of the numbers 1109 and 4999 and then find 6 integers x and y to satisfy d=1109x+4999y.
- d) If c is any common multiple of a and b. Then prove that [a, b]|c

UNIT - II

2. a) Prove that every positive integer greater than one has at least one prime divisor.

b) Show that if m is a composite integer, then prove that $\underbrace{\xleftarrow{11\cdots 11}}_{m \text{ term}}$ is a composite integer. 6

OR

- c) Prove that any two distinct Fermat number are relatively prime i.e. $(f_m, F_n) = 1.$ 6
- d) Prove that Diophantine equation ax + by = c has a solution iff d/c, where d = (a, b).

UNIT - III

- 3. a) Show that if $a \equiv 1 \pmod{p^n}$, then $a^p \equiv 1 \pmod{p^{n+1}}$, where n is a positive integer and p is a prime number. 6
 - b) If r₁, r₂,...,r_m is a complete system of residues modulo m and (a, m) = 1,
 a is a positive integer, then prove that ar₁ + b, ar₂ + b..., ar_m + b is also complete system of residues modulo m.

OR

	c)	Show that the system of congruences $x \equiv a \pmod{m}, x \equiv b \pmod{n}$ has a solution iff $(m, n) (a-b)$.	6
	d)	Solve the congruence $140x \equiv 133 \pmod{301}$.	6
		UNIT - IV	
4.	a)	Let $n = p_1^{a_1} p_2^{a_2} \dots p_m^{a_m}$ be the prime-power factorization of the positive integer n. Then prove that $\phi(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_m}\right).$	6
	b)	Solve the linear congruence. $3x \equiv 5 \pmod{16}$ by suing Euler's theorem.	6
		OR	
	c)	Let F and f be two arithmetic functions such that $F(n) = \sum_{d/n} f(d)$	6
		Then prove that $f(n) = \sum_{d/n} \mu(d) F(n/d) = \sum_{d/n} \mu(n/d) F(d)$	
	d)	Show that the integer solution of $x^2 + 2y^2 = z^2$ with $(x, y, z) = 1$ can be expressed as $x = \pm (2a^2 - b^2)$, $y = 2ab$, $z = 2a^2 + b^2$	6
5.		Solve any six.	
		a) Prove that $n^3 - n$ is divisible by 6.	2
		b) Prove that there are infinitely many pairs of integers x and y satisfying $x+y = 100$ and $(x, y) = 5$.	2
		c) Define a Fermat numbers.	2
		d) Prove that $(a^2, b^2) = c^2$ if $(a,b) = c$.	2
		e) Define a linear congruence.	2
		f) State the Chinese remainder theorem.	2
		g) If p is prime and $p \nmid a$, then show that $a^{p-1} \equiv 1 \pmod{p}$.	2
		h) Define the Mobius μ function.	2
