B.Sc.- II CBCS Pattern Semester-IV USMT-08 - Mathematics-II Paper-VIII : Elementary Number Theory

P. P Tim	Pages : ne : Th	2 nree Hours	GUG/W/23/12015 Max. Marks : 60	5)
	Not	es : 1. Solve all five questions. 2. All questions carry equal marks.		
		UNIT – I		
1.	a)	Prove that $(n-1)^2 (n^k - 1) \Leftrightarrow (n-1) k$, for any positive integer k and an	integer $n \ge 2$.	6
	b)	If x and y are odd. Prove that $x^2 + y^2$ is not a perfect square.		6
		OR		
	c)	Find the gcd of 275 and 200 express it in the form 275x+200y.		6
	d)	Prove that (a,b) [a,b] = ab, for positive integer a and b.		6
		UNIT – II		
2.	a)	Let a and b be relatively prime integers. If d is a positive divisor of ab. She a unique pair of positive divisor d_1 of a and d_2 of b such that $d = d_1d_2$.	ow that there is	6
	b)	If (a,b) = 1, then show that $(a^2, b^2) = 1$ and Prove that $(a^2, b^2) = c^2$, if (a,b)	(c) = c, c > 0.	6
		OR		
	c)	Prove that $F_0F_1 \cdots F_{n-1} = F_n - 2$, for all positive integer n.		6
	d)	Find the solution of linear Diophantine equation $10x+6y=110$.	(6
		UNIT – III		
3.	a)	Let f denote a polynomial with integral coefficients. If $a \equiv b \pmod{2}$. Prove $f(a) \equiv f(b) \pmod{2}$.	e that	6
	b)	Prove that congruence is an equivalence relation.	(6
		OR		
	c)	Show that the system of congruences $x \equiv a \pmod{x}$, $x \equiv b \pmod{a}$ has a solution only if $(m,n) (a-b)$.	olution if and	6
	d)	Solve the system of three congruences $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$ and $x \equiv 3 \pmod{5}$	$\equiv 2 \pmod{7}.$	6

UNIT – IV

4.	a)	Solve linear congruence $5x \equiv 3 \pmod{14}$ by using Euler's theorem.	6
	b)	Prove that the Mobius μ -function is multiplicative.	6
		OR	
	c)	If x, y, z is Pythagorean triple and $(x,y) = d$. Prove that $(y,z) = (z,x) = d$	6
	d)	Let $n = p_1^{a_1} p_2^{a_2} \dots p_r^{a_r}$ be the prime factorization of the integer $n > 1$. If f is multiplicative function. Prove that $\sum_{d n} \mu(d) f(d) = (1 - f(p_1))(1 - f(p_2)) \dots (1 - f(p_r)).$	6
5.		Solve any six.	
		a) Show that if a is an integer, then 3 divides $a^3 - a$.	2
		b) State the Euclidean algorithm.	2
		c) Prove that if $2^m - 1$ is prime, then m is also prime.	2
		d) Define linear Diophantine equation.	2
		e) If $a \equiv b \pmod{a}$ and $d \mid m, d > 0$, then prove that $a \equiv b \pmod{d}$	2
		f) Find the remainder obtained upon dividing the sum. 1!+2!+3!+4!+5!+ +1000!+1001!by 12.	2
		g) Find the units digit of 3^{1000} by Euler's theorem.	2
		h) Define Pythagorean Triple.	2
