Time: Three Hours

Max. Marks: 60

Notes: 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) Prove that $(\mathrm{n}-1)^{2}\left|\left(\mathrm{n}^{\mathrm{k}}-1\right) \Leftrightarrow(\mathrm{n}-1)\right| \mathrm{k}$, for any positive integer k and an integer $\mathrm{n} \geq 2$.
b) If x and y are odd. Prove that $\mathrm{x}^{2}+\mathrm{y}^{2}$ is not a perfect square.

OR

c) Find the gcd of 275 and 200 express it in the form $275 x+200 y$.
d) Prove that
$(\mathrm{a}, \mathrm{b})[\mathrm{a}, \mathrm{b}]=\mathrm{ab}$, for positive integer a and b .

UNIT - II

2. a) Let a and b be relatively prime integers. If d is a positive divisor of $a b$. Show that there is a unique pair of positive divisor d_{1} of a and d_{2} of b such that $d=d_{1} d_{2}$.
b) If $(a, b)=1$, then show that $\left(a^{2}, b^{2}\right)=1$ and Prove that $\left(a^{2}, b^{2}\right)=c^{2}$, if $(a, b)=c, c>0$.

OR

c) Prove that $F_{0} F_{1} \cdots F_{n-1}=F_{n}-2$, for all positive integer n.
d) Find the solution of linear Diophantine equation $10 x+6 y=110$.
UNIT - III
3. a) Let f denote a polynomial with integral coefficients. Ifa $\equiv b$ (modm). Prove that

$$
\mathrm{f}(\mathrm{a}) \equiv \mathrm{f}(\mathrm{~b})(\operatorname{modm}) .
$$

b) Prove that congruence is an equivalence relation.

OR

c) Show that the system of congruences $\mathrm{x} \equiv \mathrm{a}(\operatorname{modm}), \mathrm{x} \equiv \mathrm{b}(\operatorname{modn})$ has a solution if and only if $(m, n) \mid(a-b)$.
d) Solve the system of three congruences $x \equiv 2(\bmod 3), x \equiv 3(\bmod 5)$ and $x \equiv 2(\bmod 7)$.

UNIT - IV

4. a) Solve linear congruence $5 x \equiv 3(\bmod 14)$ by using Euler's theorem.
b) Prove that the Mobius μ-function is multiplicative.

OR

c) If x, y, z is Pythagorean triple and $(x, y)=d$.

Prove that $(y, z)=(z, x)=d$
d) Let $\mathrm{n}=\mathrm{p}_{1}^{\mathrm{a}_{1}} \mathrm{p}_{2}^{\mathrm{a}_{2}} \ldots \mathrm{p}_{\mathrm{r}}^{\mathrm{a}_{\mathrm{r}}}$ be the prime factorization of the integer $\mathrm{n}>1$. If f is multiplicative function. Prove that

$$
\sum_{\mathrm{d} \mid \mathrm{n}} \mu(\mathrm{~d}) \mathrm{f}(\mathrm{~d})=\left(1-\mathrm{f}\left(\mathrm{p}_{1}\right)\right)\left(1-\mathrm{f}\left(\mathrm{p}_{2}\right)\right) \ldots\left(1-\mathrm{f}\left(\mathrm{p}_{\mathrm{r}}\right)\right)
$$

5. Solve any six.
a) Show that if a is an integer, then 3 divides $\mathrm{a}^{3}-\mathrm{a}$.
b) State the Euclidean algorithm.
c) Prove that if $2^{m}-1$ is prime, then m is also prime.
d) Define linear Diophantine equation.
e) If $\mathrm{a} \equiv \mathrm{b}(\operatorname{modm})$ and $\mathrm{d} \mid \mathrm{m}, \mathrm{d}>0$, then prove that $\mathrm{a} \equiv \mathrm{b}(\operatorname{modd})$

f) Find the remainder obtained upon dividing the sum.

$1!+2!+3!+4!+5$!+ --- +1000!+1001! by 12.
g) Find the units digit of 3^{1000} by Euler's theorem.
h) Define Pythagorean Triple.

