USMT-07 - Mathematics-I Paper-VII (Algebra)

P. Pages : 2

GUG/S/23/12014
Time : Three Hours
$\star 20588 \star$
Max. Marks : 60

Notes: 1. Solve all five questions.
2. All questions carry equal marks.

UNIT - I

1. a) Let G be set of all 2×2 matrices $\left[\begin{array}{ll}\text { a } & b \\ c & d\end{array}\right]$ where a, b, c, d are real number, such that $\mathrm{ad}-\mathrm{bc} \neq 0$. Show that G is an infinite non abelian group with respect to operation multiplication of matrices.
b) If G is a group, then prove that
$(\mathrm{ab})^{-1}=\mathrm{b}^{-1} \mathrm{a}^{-1} \forall \mathrm{a}, \mathrm{b} \in \mathrm{G}$

OR

c) If H and K are subgroups of G, show that $H \cap K$ is a subgroup of G.
d) For $\mathrm{S}=\{1,2,3,4,5,6,7,8,9\}$ and $\mathrm{a}=(135)(12), \mathrm{b}=(1579)$ then compute $\mathrm{a}^{-1} \mathrm{ba}$.

UNIT - II

2. a) Prove that N is a normal subgroup of G if and only if $g^{N} g^{-1}=N \forall g \in G$.
b) Let $\mathrm{a} \in \mathrm{G}$ be arbitrary and H be a subgroup of G . Then prove that $\mathrm{Ha}=\mathrm{H} \Leftrightarrow \mathrm{a} \in \mathrm{H}$.

OR

c) Let H be a subgroup of G . then prove that there is a one to one correspondence between any two right losets of H in G .
d) If G is a finite group and H is a subgroup of G, then prove that $O(H)$ is a divisor of $O(G)$.

UNIT - III

3. a) G is a group of non zero real numbers under multiplication, $\phi: G \rightarrow$ G. s.t. $\phi(x)=x^{2}$. Show that ϕ is a homomorphism and determine its Kernel.
b) Let N be a normal subgroup of G . Define mapping $\phi: \mathrm{G} \rightarrow \mathrm{G} / \mathrm{N}$ such that $\phi(\mathrm{x})=\mathrm{Nx} \forall \mathrm{x} \in \mathrm{G}$ then prove that ϕ is a homomorphism of G onto G / N.

OR

c) Let ϕ be a homomorphism of G onto G^{1} with Kernel K. Then prove that $G / K \approx G^{1}$.
d) If ϕ is a homomorphism of G into G^{1} with Kernel K, then prove that K is a normal subgroup of G.

UNIT - IV

4. a) Prove that a Ring R is commutative if and only if $(a+b)^{2}=a^{2}+2 a b+b^{2}, \forall a, b \in R$.
b) If R is a ring with zero element 0 , then prove that for all $\mathrm{a}, \mathrm{b} \in \mathrm{R}$
i) $\mathrm{a} 0=0 \mathrm{a}=0$
ii) $\quad \mathrm{a}(-\mathrm{b})=(-\mathrm{a}) \mathrm{b}=-(\mathrm{ab})$

OR

c) Prove that A non empty subset S of a ring R is a subring of R. $\Leftrightarrow x-y, x y \in S \forall x, y \in S$.
d) Show that the ring $\mathrm{R}=\{\mathrm{a}+\mathrm{b} \sqrt{2} / \mathrm{a}, \mathrm{b} \in \mathrm{Z}\}$ is an integral domain under addition and multiplication.
5. Attempt any six.
a) Prove that the identity of a group G is unique.
b) If $\mathrm{G}=\{1,-1, \mathrm{i},-\mathrm{i}\}$ and operation is usual multiplication. Find the order of $(-\mathrm{i})$.
c) Define right coset of H in G.
d) Define Quotient Group.
e) Define Kernel of Homomorphism.
f) If ϕ is an homomorphism of a group G into group G^{1} then prove that $\phi(e)=e^{1}$.
g) Define associative ring.
h) Define zero divisors in ring.

