B.Sc.-II (CBCS Pattern) Semester - IV USMT-07 - Mathematics-I Paper-VII (Algebra)

	ages : ie : Th	$\frac{1}{2}$ aree Hours $\frac{1}{2} = 0 = 5 = 8 = 1$	GUG/S/23/12014 Max. Marks : 60				
	Not	es : 1. Solve all five questions. 2. All questions carry equal marks.					
UNIT – I							
1.	a)	Let G be set of all 2×2 matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ where a, b, c, d are real number, s	such that	6			
		$ad-bc \neq 0$. Show that G is an infinite non abelian group with respect to op multiplication of matrices.	eration				
	b)	If G is a group, then prove that $(ab)^{-1} = b^{-1}a^{-1} \forall a, b \in G$	(6			
		OR					
	c)	If H and K are subgroups of G, show that $H \cap K$ is a subgroup of G.	(6			
	d)	For S = {1,2,3,4,5,6,7,8,9} and a = (1 3 5)(1 2), b = (1 5 7 9) then compute	$e a^{-1}ba$.	6			
UNIT – II							
2.	a)	Prove that N is a normal subgroup of G if and only if $g^N g^{-1} = N \forall g \in G$.		6			
	b)	Let $a \in G$ be arbitrary and H be a subgroup of G. Then prove that $Ha = H < G$	$\Leftrightarrow a \in H.$	6			
OR							
	c)	Let H be a subgroup of G. then prove that there is a one to one corresponder any two right losets of H in G.	nce between	6			
	d)	If G is a finite group and H is a subgroup of G, then prove that $O(H)$ is a difference of $O(H)$ is a difference of $O(H)$.	ivisor of O(G).	6			
		UNIT – III					
3.	a)	G is a group of non zero real numbers under multiplication, $\phi: G \to G$. s.t. Show that ϕ is a homomorphism and determine its Kernel.	$\phi(\mathbf{x}) = \mathbf{x}^2.$	6			
	b)	Let N be a normal subgroup of G. Define mapping $\phi: G \to G / N$ such that $\phi(x) = Nx \ \forall x \in G$ then prove that ϕ is a homomorphism of G onto G/N.		6			

OR

c) Let ϕ be a homomorphism of G onto G¹ with Kernel K. Then prove that G/K \approx G¹.

6

6

6

d) If ϕ is a homomorphism of G into G¹ with Kernel K, then prove that K is a normal subgroup of G.

$\mathbf{UNIT} - \mathbf{IV}$

a)	Prove that a Ring R is commutative if and only if $(a+b)^2 = a^2 + 2ab + b^2$, $\forall a, b \in \mathbb{R}$.	6
ć	a)	Prove that a Ring R is commutative if and only if $(a+b)^2 = a^2 + 2ab + b^2$, $\forall a, b \in \mathbb{R}$.

- b) If R is a ring with zero element 0, then prove that for all $a, b \in R$
 - i) a0 = 0a = 0
 - ii) a(-b) = (-a)b = -(ab)

OR

c)	Prove that A non empty subset S of a ring R is a subring of R. $\Leftrightarrow x - y, x y \in S \ \forall x, y \in S$.						
d)	Show that the ring $\mathbf{R} = \left\{ a + b\sqrt{2} / a, b \in \mathbf{Z} \right\}$ is an integral domain under addition and multiplication.		6				
	Attempt any six.						
	a)	Prove that the identity of a group G is unique.	2				
	b)	If $G = \{1, -1, i, -i\}$ and operation is usual multiplication. Find the order of $(-i)$.	2				
	c)	Define right coset of H in G.	2				
	d)	Define Quotient Group.	2				
	e)	Define Kernel of Homomorphism.	2				
	f)	If ϕ is an homomorphism of a group G into group G ¹ then prove that $\phi(e) = e^1$.	2				
	g)	Define associative ring.	2				
	h)	Define zero divisors in ring.	2				

5.