B.Sc.-II CBCS Pattern Semester-IV USMT-07 - Mathematics-I Paper-VII : Algebra

P. Pages : 2 Time : Three Hours		2 ree Hours $* 6 9 0 8 *$	GUG/W/23/12014 Max. Marks : 60
	Note	es : 1. Solve all five questions. 2. Each question carries equal marks.	
		UNIT – I	
1.	a)	If G is a group in which $(ab)^{i} = a^{i}b^{i}$ for three consecutive. Then show that G is abelian.	integers i for all $a, b \in G$.
	b)	Prove that, a nonempty subset H of the group G is a subgro i) $a, b \in H \Longrightarrow ab \in H$ ii) $a \in H \Longrightarrow a^{-1} \in H$	up of G if and only if 6
		OR	
	c)	If H and K are subgroups of G. Then show that $H \cap K$ is a s	subgroup of G. 6
	d)	For $S = \{1, 2, 3,9\}$ and $a, b \in A(S)$ Find a^{-1} ba where $a = (5 7 9)$ b = (1 2 3)	6

UNIT – II

2.	a)	Prove that, any two right cosets of a subgroups of group G are either disjoint or identical.	
	b)	If G is a finite group and H is a subgroup of G then prove that $0(H)$ is a divisor of $0(G)$.	6
		OR	
	c)	Prove that, a subgroup N of group G is a normal subgroup of G if and only if the product of two right cosets of N in G is again a right coset of N in G.	6
	d)	Let H be a subgroup of group G. Let for $g \in G$, $gHg^{-1} = \left\{ ghg^{-1} / h \in H \right\}$	6
		Prove that gHg^{-1} is a subgroup of G.	
		UNIT III	

UNIT – III

3. a) Let G be any group, g a fixed element in G. Define $\phi: G \to G$ by $\phi(x) = gxg^{-1}$. Prove that ϕ is an isomorphism of G into G.

b)	If ϕ is a homeomorphism of G into G ¹ with Kernel K then prove that K is normal	6
	subgroup of G. OR	
c)	Prove that, any infinite cycle group is isomorphic to the additive group of integers.	6
d)	If M, N are normal subgroups of group G Prove that $\frac{NM}{M} \approx \frac{N}{N \cap M}$	6
	UNIT – IV	
a)	If R is a ring with zero element 0, then for all $a, b \in R$, prove that.	6
	i) $a_0 - b_a = 0$ ii) $a(-b) = (-a)b = -(ab)$	
	iii) $(-a)(-b) = ab$	
b)	If in a ring R, $x^3 = x, \forall x \in R$ then show that R is commutative ring.	6
	OR	
c)	Prove that, the intersection of two subrings is a subring.	6
d)	If R is a ring in which $x^2 = x, \forall x \in R$ then prove that R is a commutative ring of characteristic 2.	6
	Solve any six .	
	a) If G is a group then for every $a \in G$ prove that $(a^{-1})^{-1} = a$.	2
	b) If a is a generator of a cyclic group G then prove that a^{-1} is also a generator of G.	2
	c) Let $G = \{1, -1, i, -i\}$ and $N = \{1, -1\}$ show that N is a normal subgroup of the multiplicative group G.	2
	d) If G is a finite group and N is a normal subgroup of G then prove that. 0(G/N) = o(G)/0(N)	2
	e) Let G be a group of integers under usual addition and $G^1 = G$ Define $Q: G \to G^1$ by $\phi(a) = n a \forall a \in G, n \in 2$ then show that ϕ is homomorphism.	2
	f) Define homomorphism and kernel of homomorphism.	2
	g) Let R be a ring, prove that if $a, b \in R$ then $(a+b)^2 = a^2 + ab + ba + b^2$	2
	h) Define Integral domain.	2

Define Integral domain. h)

4.

5.