Notes: 1. Solve all five questions.
2. Each question carries equal marks.

UNIT - I

1. a) If G is a group in which $(a b)^{i}=a^{i} b^{i}$ for three consecutive integers ifor all $a, b \in G$. Then show that G is abelian.
b) Prove that, a nonempty subset H of the group G is a subgroup of G if and only if
i) $a, b \in H \Rightarrow a b \in H$
ii) $a \in H \Rightarrow a^{-1} \in H$

OR

c) If H and K are subgroups of G . Then show that $\mathrm{H} \cap \mathrm{K}$ is a subgroup of G .
d) For $\mathrm{S}=\{1,2,3,----9\}$ and $\mathrm{a}, \mathrm{b} \in \mathrm{A}(\mathrm{S})$

Find a^{-1} ba where $\mathrm{a}=\left(\begin{array}{l}5 \\ 7\end{array} 9\right)$
$\mathrm{b}=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$

UNIT - II

2. a) Prove that, any two right cosets of a subgroups of group G are either disjoint or identical.
b) If G is a finite group and H is a subgroup of G then prove that $0(H)$ is a divisor of $0(\mathrm{G})$.

OR

c) Prove that, a subgroup N of group G is a normal subgroup of G if and only if the product of two right cosets of N in G is again a right coset of N in G .
d) Let H be a subgroup of group G. Let for $\mathrm{g} \in \mathrm{G}, \mathrm{gHg}^{-1}=\left\{\mathrm{ghg}^{-1} / \mathrm{h} \in \mathrm{H}\right\}$ Prove that gHg^{-1} is a subgroup of G .
UNIT - III
3. a) Let G be any group, g a fixed element in G. Define $\phi: G \rightarrow G b y(x)=\operatorname{gxg}^{-1}$. Prove that ϕ is an isomorphism of G into G .
b) If ϕ is a homeomorphism of G into G^{1} with Kernel K then prove that K is normal subgroup of G.

OR

c) Prove that, any infinite cycle group is isomorphic to the additive group of integers.

Prove that $\frac{N M}{M} \approx \frac{N}{N \cap M}$

UNIT - IV

4. a) If R is a ring with zero element 0 , then for all $a, b \in R$, prove that.
i) $\mathrm{a}_{0}=0_{\mathrm{a}}=0$
ii) $\mathrm{a}(-\mathrm{b})=(-\mathrm{a}) \mathrm{b}=-(\mathrm{ab})$
iii) $(-a)(-b)=a b$
b) If in a ring $R, x^{3}=x, \forall x \in R$ then show that R is commutative ring.

OR

c) Prove that, the intersection of two subrings is a subring. characteristic 2.
5. Solve any six.
a) If G is a group then for every $a \in G$ prove that $\left(a^{-1}\right)^{-1}=a$.
b) If a is a generator of a cyclic group G then prove that a^{-1} is also a generator of G.
c) Let $\mathrm{G}=\{1,-1, \mathrm{i},-\mathrm{i}\}$ and $\mathrm{N}=\{1,-1\}$ show that N is a normal subgroup of the multiplicative group G.
d) If G is a finite group and N is a normal subgroup of G then prove that. $0(\mathrm{G} / \mathrm{N})=\mathrm{o}(\mathrm{G}) / 0(\mathrm{~N})$
e) Let G be a group of integers under usual addition and $G^{1}=G$ Define $\mathrm{Q}: \mathrm{G} \rightarrow \mathrm{G}^{1}$ by $\phi(\mathrm{a})=\mathrm{na} \forall \mathrm{a} \in \mathrm{G}, \mathrm{n} \in 2$ then show that ϕ is homomorphism.
f) Define homomorphism and kernel of homomorphism.
g) Let R be a ring, prove that if $a, b \in R$ then $(a+b)^{2}=a^{2}+a b+b a+b^{2}$
h) Define Integral domain.

