B.Sc. F.Y. CBCS Pattern Semester-II

USPHT04 - Physics Paper-II (Magnetostatics and Electromagnetic Waves)

P. Pages : 3 Time : Three Hours				Max. Marks : 50		
	Note	s:	 All questions are compulsory. Draw neat labelled diagram wherever necessary. 			
		Eit	ther:			
1.	a)	i)	State and prove Ampere's circuital law of magnetic induction.	3		
		ii)	Using Biot-Savart's law obtain an equation for magnetic induction at a point infinite long straight conductor.	due to 4		
		iii)	A very long solenoid has 2000 turns per meter and carries a current of 20 A. I magnetic field at the center point on axis, and at the end point on the axis.	Find the 3		
	OR					
	b)	a)	Define divergence of magnetic field and show that it is always zero.	21/2		
		b)	Show that, the relation between permeability and susceptibility is $\mu_r=1+\chi$.	2½		
		c)	Define curl of magnetic field and show that $\overset{\rightarrow}{\nabla}\times\vec{B}=\overset{\rightarrow}{\mu_0}\vec{J}$.	2½		
		d)	A current in a solenoid produces a magnetizing field of 267 A/m. What is the magnetic induction inside it, if it has an iron core of magnetic susceptibility 3	2½ 000?		
		Eit	ther:			
2.	a)	i)	What is transformer? What are its types? Describe the construction and works transformer.	ng of 5		
		ii)	What are the uses of transformer?	2		
		iii)	A transformer converts 230 V A.C. to 60 V A.C. The secondary has 70 turns load across it draws 350 mA. Calculate: i) The number of turns in the primary ii) The current in the primary and iii) The power consumed	and 3		
			OR			
	b)	a)	Obtain the equation for energy stored in the form of magnetic field.	21/2		
		b)	State and explain Lenz's law of electromagnetic induction.	2½		

		c)	What is mutual induction? Define co-efficient of mutual induction between two coils. Give the units in which it is measured.	21/2				
		d)	A coil of a wire has 600 turns and has a self – inductance of 225 mH. What will be the self-inductance of second coil of same magnitude with 700 turns?	21/2				
		Eitl	ner:					
3.	a)	i)	Derive Electromagnetic wave equation for Electric field \overrightarrow{E} in free space and comment on the speed of EM wave.	3				
		ii)	Write four Maxwell's equation for free space. Give the physical significance of each equation.	5				
		iii)	State and prove Poynting theorem.	2				
			OR					
	b)	a)	Derive the equation of continuity $\overrightarrow{\nabla} \cdot \overrightarrow{J} + \partial \rho / \partial t = 0$.	21/2				
		b)	Show that, electromagnetic waves are transverse in nature.	21/2				
		c)	Explain displacement current? Give the significance.	21/2				
		d)	If the radius of the sun is 7×10^8 meter and energy emission is 3.8×10^{26} watt/sec. Calculate the Poynting vector of propagation of energy on the surface of the sun.	21/2				
		Eitl	ner:					
4.	a)	i)	State and explain Kirchhoff's current and voltage law. Apply it to deduce the condition for balance of wheat stone bridge.	4				
		ii)	Derive Helmholtz growth of current in a circuit with resistance R and inductance L. What is meant by time constant of the circuit?	4				
		iii)	The current in LR circuit rises to 40% of it's final value in 2sec. Find the time constant of the circuit.	2				
		OR						
	b)	a)	Derive an equation for decay of charges in CR circuit.	21/2				
		b)	What is dimension and unit of time constant?	21/2				
		c)	What is j – operator? Explain the use of complex number in A.C. circuit.	21/2				
		d)	The capacitor of capacitance 0.4 microfarad is discharged through resistance of 8 Mega ohm. Calculate the time taken by potential difference across the capacitor to fall down to half of its original value.	21/2				

5. Attempt any ten of the following.

a)	Write any two properties of ferromagnetic material.	1
b)	What is Lorentz force?	1
c)	What is Curie's law?	1
d)	Write any two requirements of Ideal transformer.	1
e)	Define self-induction.	1
f)	What is Physical significance of mutual induction?	1
g)	Write any two characteristics of EM wave.	1
h)	What do you mean by polarization of electromagnetic waves?	1
i)	Distinguish between conduction and displacement current.	1
j)	Write equation of growth of charges through CR circuit.	1
k)	What is complex number?	1
1)	If the inductive reactance of the inductor is 10Ω at the frequency of $\left(\frac{1}{\pi}\right)$ Hz . What is the inductance of the coil?	1
