B.Sc. F.Y. (CBCS Pattern) Semester - II USPHT03 - Physics Paper-I (Vector Analysis and Electrostatics)

P. Pages : 3 Time : Three Hours			lours * 1 7 2 1 * GUG/S/23/11 Max. Marks		
	Notes : 1. 2. Given : 1)				
			1) $\frac{1}{4\pi\varepsilon_{o}} = 9 \times 10^{9} \text{ Nm}^{2} / \text{cm}^{2}$ 2) $\varepsilon_{o} = 8.85 \times 10^{-12} \text{ c}^{2} / \text{ Nm}^{2}$		
			2) $\epsilon_0 = 8.83 \times 10^{-7}$ 3) $\frac{\ell_0}{4\pi} = 10^{-7}$		
			4) $e = 1.6 \times 10^{-19} C$		
		Eit	her		
1.	a)	i)	Distinguish between scalar and vector quantity.	2	
		ii)	Define scalar product of two vector and express it in terms of their rectangular components.	3	
		iii)	Define vector product of two vectors.	2	
		iv)	If $\overline{A} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ & $\overline{B} = \hat{i} + 3\hat{k}$	3	
			Find i) $\overline{A} \cdot \overline{B}$ ii) $\overline{A} \times \overline{B}$ iii) $2\overline{A} + 4\overline{B}$		
			OR		
	b)	i)	Define gradient of scalar field in cartesian coordinate. Explain its physical significance.	21/2	
		ii)	Explain significance of divergence.	21/2	
		iii)	State Gauss-divergence and stokes theorem.	21/2	
		iv)	Find the divergence of the vector \vec{A} at point (1, 1, -1), where $\vec{A} = (xy\hat{i} + yz\hat{j} + zx\hat{k})$.	21/2	
		Eit	her		
2.	a)	i)	Define electric dipole and electric dipole moment.	2	
		ii)	Derive an expression for electric field due to an electric dipole at a point a) On axial line b) On equatorial line. Hence, Prove $E_{axial} = 2 \times Equatorial$.	5	

- iii) Calculate the intensity of the electric field due to an electric dipole of dipole moment $3 4.5 \times 10^{-10}$ coulometer at a distance of 1 meter from
 - a) It on its axis and
 - b) On the perpendicular axis bisector

OR

b)	i)	Derive an expression for torque acting on a dipole placed in an uniform electric field.	21/2				
	ii)	Show that electric field is a negative gradient of potential.	21/2				
	iii)	The radius of nucleus of silver (atomic number $z = 47$) is 3.4×10^{-14} m. Calculate the electric potential of the surface of nucleus.	21/2				
	iv)	Show that potential energy of an electric dipole in an uniform electric field is $\overline{U} = -\overline{P} \cdot \overline{E}$.	21/2				
	Either						
a)	i)	State the Gauss's theorem of electrostatics and express it in differential form.	2				
	ii)	 Derive an expression for electric field due to a uniformly charged spherical shell using Gauss's law, at a point a) Outside the shell b) On the surface of the shell c) Inside the shell 	5				
	iii)	 A charge 10⁻⁸C is uniformly distributed on a spherical shell of radius 0.1m. Determine the electric field intensity. a) At a point on the surface of spherical shell b) At a distance 5cm from the centre of the shell c) At a distance 0.50m from the centre of the shell 	3				
		OR					
b)	i)	Derive an expression for electric field intensity due to point charge.	21/2				
	ii)	Obtain an expression for electric potential due point charge.	21/2				
	iii)	Obtain an expression for electric field at a point near the plane charge sheet.	21/2				
	iv)	A point charge 14C is located at the centre of the cube of side 7cm. Find the electric flux througha) Whole of the cubeb) Each face of the cube	21/2				
	Eit	her					
a)	i)	Define capacity of a capacitor state its SI unit.	2				

ii) Obtain an expression for capacity of a parallel plate capacitor when it is completely filled with dielectrics.

4.

3.

iii) The distance between the parallel plates of capacity c is d. If the slab of deectric 3 constant k and thickness 3d/4 is inserted between the plates. Find the capacity of the system.

OR

b)	i)	Obtain the relation between three electric vectors $\overline{D}, \overline{E}$ and \overline{P} .	21/2
	ii)	Derive an expression for energy per unit volume of a charged capacitor.	21/2
	iii)	Explain why the introduction of dielectric slab between the plates of capacitor increases its capacitance.	21/2
	iv)	Capacitance of parallel plate separated by 1mm in air is $1\mu F$. Find the area of each plate.	21/2
	Atte	empt any ten of the following.	
	a)	Define volume integral of vector field.	1
	b)	Define curl of a vector.	1
	c)	If $\overline{E} = (x+y)\hat{i} + (y-2x)\hat{j} - 2z\hat{k}$. Prove that $\overline{\nabla} \cdot \overline{E} = 0$.	1
	d)	Check whether the electric field $E = xy\hat{i} + y^3\hat{j}$ is conservative or not?	1
	e)	Define electric field and electric field intensity.	1
	f)	Define electric potential and write its SI unit.	1
	g)	What is Gaussian surface?	1
	h)	Represent graphically the variation of electric field intensity with a distance from the center due to the solid sphere.	1
	i)	A sphere of radius 5cm has a point charge $q = 17.7 \ell c$ located at its center. Find electric flux through it.	1
	j)	What is polarization of a dielectrics?	1
	k)	10 microcoulomb charge given to a conductor increases its potential by 2.5VoH. What is the capacitance of the conductor?	1
	1)	What is spherical capacitor?	1

5.